• 제목/요약/키워드: botrytis cinerea

검색결과 404건 처리시간 0.027초

Isopropylphenyl 유도체들의 합성과 식물병원균에 대한 항균활성 (Synthesis and Phytopathogenic Activities of Isopropylphenyl Derivatives)

  • 장도연;최경길;이병호;김태준;정봉진;최원식
    • Applied Biological Chemistry
    • /
    • 제50권3호
    • /
    • pp.178-186
    • /
    • 2007
  • 항균균활성이 있는 4-isopropylphenol(I)과 2-isopropylphenol (II)을 출발물질로 하여 ester, sulfonyl ester, phosphoyl ester와 ether계열 유도체 42종을 합성하였으며, 확인은 IR, $^{1}H-NMR$과 GC/MS를 이용하였다. 이들 유도체들에 대한 in vitro 항균활성 실험을 오이탄저병균(Colletotrichum orbiculare) 외 9종에 대하여 실시하였다. 그 결과, 2-isopropylphenyl piperonyloate(II-7a)가 오이탄저병균(Colletotrichum orbiculare)과 토마토잎마름병균(Phytophthora infestans)에 효과가 있었으며, 4-isopropylphenyl bromoacetate(I-3a)가 오이잿빛곰팡이병균(Botrytis cinerea), 4-isopropylphenyl-4-methoxybenzenesulfonate(I-6b)는 벼도열병균(Pycularia oryzae)에 탁월한 효과를 나타내었으며, 4-isopropylphenylbenzyl ether(I-4d)가 오이탄저병균(Colletotrichum orbiculare)에 우수한 효과를 나타내었다. In vivo 실험에서는 2-isopropylphenyl piperonyloate(II-7a)가 오이탄저병(Colletotrichum orbiculare)과 토마토잎마름병(Phytophthora infestans), 4-isopropylphenyl 4-methoxybenzenesulfonate(I-6b)가 벼도열병(Pycularia oryzae)에 매우 우수한 항균활성을 나타내었다.

Streptomyces sp. SAR01 균주에서의 항진균 관련 단백질 분석 (Analysis of Antifungal Proteins in Streptomyces sp. SAR01)

  • 이영근;김재성;조규성;장병일;추철형
    • 환경생물
    • /
    • 제20권3호
    • /
    • pp.237-244
    • /
    • 2002
  • 항진균 활성 관련 단백질을 탐색하기 위해 미역류로부터 식물병원성 곰팡이의 생장을 저해하는 SAR01 균주를 분리하였고, FAME (fatty acid methyl ester) 분석 결과, Streptomyces sp.로 동정되었다. 방사선 조사$(^{60}Co)$를 실시한 결과, Botrytis cinerea를 포함한 5종의 식물병원성 곰팡이에 대한 항진균 활성을 소실한 SAR535 균주 외 6종의 돌연변이 균주가 유도되었다. SAR01 야생형 균주와 SAR535 돌연변이 균주의 세포내 단백질의 이차원 전기영동 분석결과, 6종의 단백질이 야생형 균주인 SAR01 균주의 세포내에만 존재하였다. 이들 6종의 단백질 중, 5종은 heat shock protein 70 (HSP70), Fe-containing superoxide dismutase II (Fe - SODII), ribosome recycling factor (RRF), 10 kD chaperonin (GroES) 및 inorganic pyrophosphatase (PPAse)와 각각 75%, 93%, 100%, 96% 및 83%의 유사성을 보였다. 이들 6종의 단백질들은 Streptomyces sp. SAR01 균주의 항진균 활성과 밀접한 관계가 있을 것으로 사료된다.

In vivo Antifungal Activity Against Various Plant Pathogenic Fungi of Curcuminoids Isolated from the Rhizomes of Curcuma longa

  • Cho, Jun-Young;Choi, Gyung-Ja;Lee, Seon-Woo;Lim, He-Kyoung;Jang, Kyung-Soo;Lim, Chi-Hwan;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제22권1호
    • /
    • pp.94-96
    • /
    • 2006
  • In a search for plant extracts with potent in vivo antifungal activity against various plant pathogenic fungi, the methanol extract of the Curcuma longa rhizomes effectively controlled the development of rice blast catised by Magnaporthe grisea and tomato late blight caused by Phytophthora infestans. Three curcuminoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin were purified from the methanol extract of C. longa rhizomes as antifungal principles. Among the three curcuminoids, demethoxycurcumin was the most active to both rice blast and tomato late blight, followed in order by curcumin and bisdemethoxycurcumin. However, they all exhibited no or little in vivo antifungal activity against other fungal pathogens causing rice sheath blight (Corticium sasaki), tomato gray mold (Botrytis cinerea), wheat leaf rust (Puccinia recondita), or barley powdery mildew (Blumeria graminis f. sp. hordel).

Isolation and In vitro and In vivo Antifungal Activity of Phenylacetic acid Produced by Micromonospora aurantiaca Strain JK-1

  • Kim, Hyo-Jin;Hwang, In-Sun;Kim, Beom-Seok;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제22권1호
    • /
    • pp.75-89
    • /
    • 2006
  • The actinomycete strain JK-1 that showed strong inhibitory activity against some plant pathogenic fungi and oomycetes was isolated from Jung-bal Mountain in Ko-yang, Korea. The strain JK-1 produced spores singly borne on sporophores and the spores were spherical and 0.9-1.2 11m in diameter. The cell wall of the strain JK-1 contained meso-diaminopimelic acid. The actinomycete strain JK-1 was identified as the genus Micromonospora based on the morphological, physiological, biochemical and chemotaxonomic characteristics. From the 168 rDNA analysis, the strain JK-1 was assigned to M aurantiaca. The antibiotic MA-1 was purified from the culture broth of M aurantiaca JK-1 using various purification procedures, such as Diaion HP20 chromatography, C18 flash column chromatography, silica gel flash column chromatography and Sephadex LH-20 column chromatography. $^{1}H-$, $^{13}C-NMR$ and EI mass spectral analysis of the antibiotic MA-1 revealed that the antibiotic MA-1 is identical to phenylacetic acid. Phenylacetic acid showed in vitro inhibitory effects against fungal and oomycete pathogens Alternaria mali, Botrytis cinerea, Magnaporthe grisea, Phytophthora capsici and yeast Saccharomyces cerevisiae at < 100 $\mug$ $ml^{-1}$. In addition, phenylacetic, acid completely inhibited the growth of Sclerotinia sclerotiorum, Bacillus subtilis, Candida albicans, Xanthomonas campestris pv. vesicatoria at < $\mug$ $ml^{-1}$. Phenylacetic acid strongly inhibited conidial germination and hyphal growth of M grisea and C. orbiculare. Phenylacetic acid showed significantly high levels of inhibitory' effect against rice blast and cucumber anthracnose diseases at 250 $\mug$ $ml^{-1}$. The control efficacies of phenylacetic acid against the two diseases were similar to those of commercial compounds tricyclazole, iprobenfos and chlorothalonil .n the greenhouse.

Variation in Susceptibility of Pine Species Seedlings with the Pine Wood Nematode, Bursaphelenchus xylophilus, in Greenhouse

  • Woo, Kwan-Soo;Kim, Yeong-Sik;Koo, Yeong-Bon;Yeo, Jin-Kie;Moon, Yil-Soong
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.70-75
    • /
    • 2007
  • We conducted an inoculation test using nine open-pollinated families of pine trees to evaluate their susceptibility and mortality in different densities of pine wood nematode. Three-year-old nine open-pollinated pine families were inoculated with Bursaphelenchus xylophilus at levels of 3,000, 5,000, and 7,000 nematodes/seedling in greenhouse. There were no distinct patterns in latent period among three densities of B. xylophilus in all families. Most families showed the first disease symptoms of needle discoloration within 12-15 days after inoculation. However, open-pollinated progenies of Pinus densiflora showed the longest latent period because none of one-year-old needles were wilted until 14 days after inoculation with 5,000 and 7,000 nematodes. One-year-old needles were wilted earlier than current needles in all tested families with all densities of B. xylophilus. Current needles were not wilted until 14 days after inoculation in all seedlings. The mortality of all seedlings rapidly increased from 35 days to 49 days after inoculation, and all died within 80 days except two seedlings. A 3,000 nematodes/100 ${\mu}L$ with sterilized distilled water are enough to screen 3-year-old pine seedlings for resistance to B. xylophilus.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Effect of Rosemary Essential Oil and Trichoderma koningiopsis T-403 VOCs on Pathogenic Fungi Responsible for Ginseng Root Rot Disease

  • Hussein, Khalid Abdallah;Lee, Young-Don;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1018-1026
    • /
    • 2020
  • Rosemary essential oil was evaluated for antifungal potentiality against six major ginseng pathogens: Sclerotinia sclerotiorum, Sclerotinia nivalis, Cylindrocarpon destructans, Alternaria panax, Botrytis cinerea, and Fusarium oxysporum. The in vitro fungicidal effects of two commonly used fungicides, namely mancozeb and fenhexamid, and the volatile organic compounds (VOCs) of Trichoderma koningiopsis T-403 on the mycelial growth were investigated. The results showed that rosemary essential oil is active against all of the pathogenic strains of ginseng root rot, whereas rosemary oil displayed high ability to inhibit the Sclerotinia spp. growth. The highest sensitivity was S. nivalis, with complete inhibition of growth at 0.1% v/v of rosemary oil, followed by Alternaria panax, which exhibited 100% inhibition at 0.3% v/v of the oil. Minimum inhibitory concentrations (MICs) of rosemary oil ranged from 0.1 % to 0.5 % (v/v). Chemical analysis using GC-MS showed the presence of thirty-two constituents within rosemary oil from R. officinals L. Camphore type is the most frequent sesquiterpene in rosemary oil composition. Mancozeb and fenhexamid showed their highest inhibition effect (45% and 30%, respectively) against A. panax. T. koningiopsis T-403 showed its highest inhibition effect (84%) against C. destructans isolate. This study may expedite the application of antifungal natural substances from rosemary and Trichoderma in the prevention and control of phytopathogenic strains in ginseng root infections.

Pseudomonas koreensis에 의한 잡초제어활성물질인 HCN 생성과 이 균주의 식물성장 촉진 및 흰개미 살충 활성 (Production of HCN, Weed Control Substance, by Pseudomonas koreensis and its Plant Growth-Promoting and Termiticidal Activities)

  • 유지연;장은진;박수연;손홍주
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.771-780
    • /
    • 2018
  • To develope a microbial weed control agent, HCN-producing bacteria were isolated, and their characteristics were investigated. A selected strain of WA15 was identified as Pseudomonas koreensis by morphological, cultural, biochemical and 16S rRNA gene analyses. The conditions for HCN production was investigated by a One-Variable-at-a-Time (OVT) method. The optimal HCN production conditions were tryptone 1%, glycine 0.06%, NaCl 1%, and an initial pH and temperature of 5.0 and $30^{\circ}C$, respectively. The major component for HCN production was glycine. Under optimal conditions, HCN production was about 3 times higher than that of the basal medium. The WA15 strain had physiological activities, such as indoleacetic acid that was associated with the elongation of plant roots and siderophore and ammonification inhibiting fungal growth, and produced hydrolytic enzymes, such as cellulase, pectinase and lipase. The strain was able to inhibit the growth of phytopathogenic fungi, such as Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, by the synergistic action of volatile HCN and diffusible antimicrobial compounds. A microscopic observation of R. solani that was teated with the WA15 strain showed morphological abnormalities of fungal mycelia, which could explain the role of the antimicrobial metabolites that were produced by the WA15 strain. The volatile HCN produced by the WA15 strain was also found to have insecticidal activity against termites. Our results indicate that Pseudomonas koreensis WA15 can be applied as a microbial agent for weed control and also as a termite repellent. Furthermore, it could be applied as a microbial termiticidal agent to replace synthetic insecticides.

Isolation and Characterization of Oligotrophic Bacteria Possessing Induced Systemic Disease Resistance against Plant Pathogens

  • Han, Song-Hee;Kang, Beom-Ryong;Lee, Jang-Hoon;Kim, Hyun-Jung;Park, Ju-Yeon;Kim, Jeong-Jun;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.68-74
    • /
    • 2012
  • Biocontrol microbes have mainly been screened among large collections of microorganisms $via.$ nutrient-rich $in$ $vitro$ assays to identify novel and effective isolates. However, thus far, isolates from only a few genera, mainly spore-forming bacilli, have been commercially developed. In order to isolate field-effective biocontrol microbes, we screened for more than 200 oligotrophic bacterial strains, isolated from rhizospheres of various soil samples in Korea, which induced systemic resistance against the soft-rot disease caused by $Pectobacterium$ $carotovorum$ SCC1; we subsequently conducted in $planta$ bioassay screening. Two oligotrophic bacterial strains were selected for induced systemic disease resistance against the $Tobacco$ $Mosaic$ $Virus$ and the gray mold disease caused by $Botrytis$ $cinerea$. The oligotrophic bacterial strains were identified as $Pseudomonas$ $manteilii$ B001 and $Bacillus$ $cereus$ C003 by biochemical analysis and the phylogenetic analysis of the 16S rRNA sequence. These bacterial strains did not exhibit any antifungal activities against plant pathogenic fungi but evidenced several other beneficial biocontrol traits, including phosphate solubilization and gelatin utilization. Collectively, our results indicate that the isolated oligotrophic bacterial strains possessing induced systemic disease resistance could provide useful tools as effective biopesticides and might be successfully used as cost-effective and preventive biocontrol agents in the field.

몇 가지 식물추출물의 벼 병해충 방제 효과 (Controlling Effect of Some Plant Extracts on Pathogenic Fungi and Pest of Rice)

  • 황기철;신소희;정남진
    • 한국유기농업학회지
    • /
    • 제22권2호
    • /
    • pp.269-280
    • /
    • 2014
  • 본 연구는 고삼, 정향 및 neem 추출물에 대한 항균 항충력을 규명하여 벼 친환경 재배 포장에서 병해충 방제제로의 이용가능성을 검토하고자 수행하였다. 식물추출물에 대한 잿빛곰팡이균에 대한 항균력 실험결과 정향추출물이 가장 높은 활성을 나타내었으며, 벼멸구에 대한 살충력은 고삼추출물이 가장 높은 효과를 보였는데, 고삼추출물의 300배 희석용액에서도 100%의 살충 방제가를 나타내었다. 정향과 고삼추출물에 각각 목초액(10%)과 유화전착제(10%)를 혼합하여 친환경 벼 재배포장에 살포하고 병해충 발생률을 조사한 결과, 정향추출물 처리구의 병해 방제가는 무처리구(100%) 대비 50.8%, 해충 발생은 70.6%를 나타내었고, 고삼추출물 처리구는 무처리(100%) 대비 병해 방제가는 43.1%, 해충 방제가는 79.1%로 나타났다. 결론적으로, 고삼 및 정향 추출물은 벼 친환경 재배 시 병해는 약 50%, 충해는 약 70%를 감소시킬 수 있어서 친환경농자재로의 활용 가능성을 확인하였다.