Analysis of Antifungal Proteins in Streptomyces sp. SAR01

Streptomyces sp. SAR01 균주에서의 항진균 관련 단백질 분석

  • 이영근 (한국원자력연구소, RI 방사선응용연구팀) ;
  • 김재성 (한국원자력연구소, RI 방사선응용연구팀) ;
  • 조규성 (한국원자력연구소, RI 방사선응용연구팀) ;
  • 장병일 (한국원자력연구소, RI 방사선응용연구팀) ;
  • 추철형 (한국원자력연구소, RI 방사선응용연구팀)
  • Published : 2002.09.01

Abstract

To analyze proteins related to antifungal activity, SAR01 strain was isolated from seaweed and identified as Streptomyces sp. from the result of FAME (fatty acid methyl ester) analysis. The isolated strain had antifungal activities against T species of plant pathogenic fungi. Antifungal activity deficient mutant (SAR 535) of Streptomyces sp. SAR01 was induced by gamma radiation $(^{60}Co,\;5kGy)$. By 2 D electrophoresis analysis, 6 protein spots were found in wild strain (SAR01) but these spots disappeared in mutant strain (SAR535). Among them, 5 proteins showed similarities to heat shock protein 70(HSP70), Fe-containing superoxide dismutase II (Fe- SODII), ribosome recycling factor (RRF), 10 kDa chnperonin (GroES) and inorganic pyrophosphatase (PPAse), respectively. It suggested that the above 6 proteins could be closely related to the antifungal activity of Streptomyces sp. SAR01.

항진균 활성 관련 단백질을 탐색하기 위해 미역류로부터 식물병원성 곰팡이의 생장을 저해하는 SAR01 균주를 분리하였고, FAME (fatty acid methyl ester) 분석 결과, Streptomyces sp.로 동정되었다. 방사선 조사$(^{60}Co)$를 실시한 결과, Botrytis cinerea를 포함한 5종의 식물병원성 곰팡이에 대한 항진균 활성을 소실한 SAR535 균주 외 6종의 돌연변이 균주가 유도되었다. SAR01 야생형 균주와 SAR535 돌연변이 균주의 세포내 단백질의 이차원 전기영동 분석결과, 6종의 단백질이 야생형 균주인 SAR01 균주의 세포내에만 존재하였다. 이들 6종의 단백질 중, 5종은 heat shock protein 70 (HSP70), Fe-containing superoxide dismutase II (Fe - SODII), ribosome recycling factor (RRF), 10 kD chaperonin (GroES) 및 inorganic pyrophosphatase (PPAse)와 각각 75%, 93%, 100%, 96% 및 83%의 유사성을 보였다. 이들 6종의 단백질들은 Streptomyces sp. SAR01 균주의 항진균 활성과 밀접한 관계가 있을 것으로 사료된다.

Keywords

References

  1. Plant. Soil v.129 Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria Chet I;R Shapira;A Ordentlich;AB Oppenheim https://doi.org/10.1007/BF00011694
  2. Vert. Microbiol. v.67 The GroES antigens of Mycobacterium avium and Mycobacterium paratuberculosis Cobb AJ;R Frothingham https://doi.org/10.1016/S0378-1135(99)00019-X
  3. Gene v.230 Duplicate genes for Fe-containing superoxide dismutase in Streptomyces coelicolor A3 (2) Chung H J;E J Kim;B Suh;J H Choi;J H Rol
  4. Treands Microbiol. v.6 Engineering desease and pest resistance in plants Dempsey DMA;H Silva;DF Klessig https://doi.org/10.1016/S0966-842X(97)01186-4
  5. Ann. N. Y. Acad. Sci. v.121 Disc electrophoresis-II: method and application to human serum proteins Dives BJ https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  6. In Biochemistry of Antimicrobial Action Antifungal, antiprotozoal and antiviral agents Franklin TJ;GA Snow;KJ Barrett Bee;RD Nolan (4th ed.)
  7. Science v.20 The biology of oxygen radicals Fridovich I
  8. Annu. Rev. Biochem. v.64 Superoxide radical and superoxide dismutases Fridovich I. https://doi.org/10.1146/annurev.bi.64.070195.000525
  9. FEBS Letters v.497 Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system Han W;P Christen https://doi.org/10.1016/S0014-5793(01)02435-8
  10. J. Ferment. Technol. v.66 Distribution of rare Actinomycetes in Japan soil Hayakawa M;K Ishizawa;H Nonomura https://doi.org/10.1016/0385-6380(88)90001-5
  11. Electrophoresis v.8 Improved silver staining of plant protein, RNA and DNA in polyacrylamide gels Helmut B;H Beier;HJ Gross https://doi.org/10.1002/elps.1150080203
  12. J. Hepatol v.35 A non-toxic heat shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of cultured rat hepatocytes caused by hydrogen peroxide and ethanol Ikeyama S;K Kusumoto;H Miyake;K Rokutan;S Tashiro https://doi.org/10.1016/S0168-8278(01)00053-8
  13. The EMBO J v.17 Evidence foe in vivo ribosome recycling the fourth step in protein biosynthesis Janosi L;S Motagui Tabar;LA Isaksson;Y Sekine;E Ohtsubo;S Zhang;Scarlett Goon;Sarah Nelken;Masahiro Shuda;Akira Kaji https://doi.org/10.1093/emboj/17.4.1141
  14. Ann Med v.31 Heat shock proteins as cellular lifeguards Jaattela M https://doi.org/10.3109/07853899908995889
  15. Appl. Environ. Microbiol. v.62 Diversity of aquatic Actinomycetes in lakes of the middle plateau, Yunna, China Jiang CL;LH Xu
  16. Clin. Diagnos. Lab. Immun. Extracellular and cytosolic iron superoxide dismutase from Mycobacterium bovis BCG Kang SK;YJ Jung;CH Kim;KY Song
  17. J. Microbiol. v.36 Diversity of Actinomycetes antagonistic to plant pathogenic fungi in cave and sca-mud soils of Korea Kim BS;JY Lee;BK Hwang
  18. Electrophoresis v.22 Two dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays Kim ST;KS Cho;YS Jang;KY Kang https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  19. Environ. Exp. Bot. v.39 γ-Irradiation damage to the tonoplast in cultured spinach cells Kondoh K;T Koshiba;A Hiraoka;M Sato https://doi.org/10.1016/S0098-8472(97)00043-9
  20. In Actinomycetes in Biotechnology Actinomycetes in agriculture and forestry Lechevalier MP;M. Goodfelow (ed.);S. T. Williams (ed.);M. Mordarski (ed.)
  21. Radiat. Phy. Chem. v.57 Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities Lee YK;HH Chang;JS Kim;KS Lee https://doi.org/10.1016/S0969-806X(99)00310-2
  22. Biochem. Biophys. Res. Commun. v.229 Evidence for GroES acting as a transcriptional regulator Legname G;P Buono;G Fossati;N Monzini;P Mascagni;D Modena;F Marcucci https://doi.org/10.1006/bbrc.1996.1818
  23. J. Clin. Invest. v.95 Clinical implications of the stress response Minowada G;WJ Welch https://doi.org/10.1172/JCI117655
  24. J. Biol. Chem. v.250 High resolution two-dimensional electrophoresis of proteins O'Farrell PH
  25. Eur. J. Soil Biol. v.37 Actinomycetes of Moroccan habitats: Isolation and screening for antifungal activities Ouhdouh Y;M Barakate;C Finance https://doi.org/10.1016/S1164-5563(01)01069-X
  26. J. Biol. Chem. v.256 Further characterization of ribosome releasing factor through a termination codon Ryoji M;JW Karpen;A Kaji
  27. Int. J. Biochem. Cell Biol. v.29 Some properties of inorganic pyrophosphatase from Bacillus subtilis Shimizu T;I Mizuhiro;S Araki;K Kishida;Y Treasawa;A Hachimori https://doi.org/10.1016/S1357-2725(96)00088-X
  28. FEBS Letters v.439 Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes Sintani T;T Uchiumi;T Yonezawa;A Salminen;AA Baykov;Reijo Lahti;Akira Hachimori https://doi.org/10.1016/S0014-5793(98)01381-7
  29. FEBS Letters v.454 Evolutionary aspects of inorganic pyrophosphatase Sivua T;A Salminen;AN Parfenyev;P Pohjanjoki;A Goldman;BS Cooperman;AA Baykov;R Lahti https://doi.org/10.1016/S0014-5793(99)00779-6
  30. Annu. Rev. Microbiol. v.47 Agroactive compounds of microbial origin Tanaka YT;S Omura https://doi.org/10.1146/annurev.mi.47.100193.000421
  31. Annu. Rev. Phytopathol. v.26 Biological control of soilborne plant pathogens in the rhizosphere with bacteria Weller DM https://doi.org/10.1146/annurev.py.26.090188.002115
  32. In Plant breeding rev. v.14 Plant anti fungal proteins Yun DJ;RA Bressan;PM Hasegawa