DOI QR코드

DOI QR Code

Isolation and In vitro and In vivo Antifungal Activity of Phenylacetic acid Produced by Micromonospora aurantiaca Strain JK-1

  • Kim, Hyo-Jin (Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University) ;
  • Hwang, In-Sun (Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University) ;
  • Kim, Beom-Seok (Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University) ;
  • Hwang, Byung-Kook (Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University)
  • Published : 2006.03.01

Abstract

The actinomycete strain JK-1 that showed strong inhibitory activity against some plant pathogenic fungi and oomycetes was isolated from Jung-bal Mountain in Ko-yang, Korea. The strain JK-1 produced spores singly borne on sporophores and the spores were spherical and 0.9-1.2 11m in diameter. The cell wall of the strain JK-1 contained meso-diaminopimelic acid. The actinomycete strain JK-1 was identified as the genus Micromonospora based on the morphological, physiological, biochemical and chemotaxonomic characteristics. From the 168 rDNA analysis, the strain JK-1 was assigned to M aurantiaca. The antibiotic MA-1 was purified from the culture broth of M aurantiaca JK-1 using various purification procedures, such as Diaion HP20 chromatography, C18 flash column chromatography, silica gel flash column chromatography and Sephadex LH-20 column chromatography. $^{1}H-$, $^{13}C-NMR$ and EI mass spectral analysis of the antibiotic MA-1 revealed that the antibiotic MA-1 is identical to phenylacetic acid. Phenylacetic acid showed in vitro inhibitory effects against fungal and oomycete pathogens Alternaria mali, Botrytis cinerea, Magnaporthe grisea, Phytophthora capsici and yeast Saccharomyces cerevisiae at < 100 $\mug$ $ml^{-1}$. In addition, phenylacetic, acid completely inhibited the growth of Sclerotinia sclerotiorum, Bacillus subtilis, Candida albicans, Xanthomonas campestris pv. vesicatoria at < $\mug$ $ml^{-1}$. Phenylacetic acid strongly inhibited conidial germination and hyphal growth of M grisea and C. orbiculare. Phenylacetic acid showed significantly high levels of inhibitory' effect against rice blast and cucumber anthracnose diseases at 250 $\mug$ $ml^{-1}$. The control efficacies of phenylacetic acid against the two diseases were similar to those of commercial compounds tricyclazole, iprobenfos and chlorothalonil .n the greenhouse.

Keywords

References

  1. Alarcon, B., Gonzalez, M. E. and Carrasco, L. 1988. Megalornycin C, a macrolide antibiotic that blocks protein glycosylation and shows antiviral activity. FEBS Lett. 231 :207 -211 https://doi.org/10.1016/0014-5793(88)80732-4
  2. Alonso, S., Bartolome-Martin, D., del Alamo, M., Diaz, E., Garcia, J. L. and Perera, J. 2003. Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene 319:71-83 https://doi.org/10.1016/S0378-1119(03)00794-7
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Grapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucl. Acids Res. 15: 3389-3402
  4. Becker, B., Lechevalier, M. P. and Lechevalier, H. A. 1965. Chemical composition of cell wall preparations from strains of various form-genera of aerobic actinomycetes. Appl. Microbiol. 13:236-243
  5. Burkhead, K. D., Slininger, P. J. and Schisler, D. A. 1998. Biological control bacterium Enterobacter cloacae S 11:T:07 (NRRL B-21050) produces the antifungal compound phenylacetic acid. Soil Biol. Biochem. 30:665-667 https://doi.org/10.1016/S0038-0717(97)00170-3
  6. Cooper, R., Horan, A. C., Gentile, F., Gullo, V, Loebenberg, D., Marquez, J., Patel, M., Puar, M. S. and Truumees, I.1988. Sch 37137, a novel antifungal compound produced by a Micromonospora sp. Taxonomy, fermentation, isolation, structure and biological properties. J. Antibiot. 41: 13-19 https://doi.org/10.7164/antibiotics.41.13
  7. Demain, A. L. 1981. Production of new antibiotics by directed biosynthesis and by the use of mutants. In: The Future of Antibiotherapy and Antibiotic Research, ed. by L. Ninet, P. E. Bost, D. H. Bouanchaud and J. Florent, pp. 417-435. Academic Press, London
  8. Ferrandez, A., Minambres, B., Garci, B., Olivera E. R., Luengo, J. M., Garcia J. L. and Diaz, E. 1998. Catabolism of phenyl acetic acid in Escherichia coli. J. Biol. Chem. 273:25974-25986 https://doi.org/10.1074/jbc.273.40.25974
  9. Fitch, W. M. 1971. Towards defining the course of evolution: minimum change for specific tree topology. Syst. Zool. 20:406-416 https://doi.org/10.2307/2412116
  10. Gerber, N. N. and Lechevalier, M. P. 1964. Phenazones and phenoxazinones from Micromonospora aerata sp. nov. and Pseudomonas iodina. Biochemistry 3:598-602 https://doi.org/10.1021/bi00892a022
  11. Hwang, B. K., Lee, J. Y., Kim, B. S. and Moon, S. S. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidis. Appl. Environ. Microbiol. 67: 3739-3745 https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  12. Hwang, B. K., Lee, J. Y., Kim, H. S. and Kim, K. D. 2004. In vitro anti-oomycete activity and in vivo control efficacy of phenylacetic acid against Phytophthora capsid. Plant Pathol. J. 20: 177-183 https://doi.org/10.5423/PPJ.2004.20.3.177
  13. Ismet, A., Vikineswary, S., Paramaswari, S., Wong, W. H., Ward, A., Seki, T., Fiedler, H. P. and Goodfellow, M. 2004. Production and chemical characterization of antifungal metabolites from Micromonospora sp. M39 isolated from mangrove rhizosphere soil. World J. Microb. Biotech. 20:523-528 https://doi.org/10.1023/B:WIBI.0000040399.60343.4c
  14. Jendrossek, D., Tomasi, G. and Kroppenstedt, R. M. 1997. Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol. Lett. 150: 179-188 https://doi.org/10.1016/S0378-1097(97)00072-4
  15. Kasai, H., Tamura, T. and Harayama, S. 2000. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int. J. Syst. Evol. Microbiol. 50:127-134 https://doi.org/10.1099/00207713-50-1-127
  16. Kawamoto, I. 1989. Genus Micromonospora Orskov 1923. In: Bergey's Manual of Systematic Bacteriology, Vol. 4, ed. by S. T. Williams, M. E. Sharpe and J. G Holt, pp. 2442-2450. Williams & Wilkins, Baltimore
  17. Kawamoto, I., Oka, T. and Nara, T. 1981. Cell wall composition of Micromonospora oliviasterospora, Micromonospora sagamiensis and related organisms. J. Bacteriol. 146:527-534
  18. Kim, B. S., Moon, S. S. and Hwang, B. K. 1999. Isolation, antifungal activity and structure elucidation of the glutarimide antibiotic, streptimidone, produced by Micromonospora coerulea. J. Agric. Food Chem. 47:3372-3380 https://doi.org/10.1021/jf981259s
  19. Kinoshita, K., Takenaka, S., Suzuki, H., Morohoshi, T. and Hayashi, M. 1991. Mycinamicins, new macrolide antibiotics. XIII. Isolation and structures of novel fermentation products from Micromonospora griseorubida (FERM BP-705). J. Antibiot. 45: 1-9
  20. Koch, C., Kroppenstedt, R. M. and Stackebrandt, E. 1996. Intrageneric relationships of the actinomycete genus Micromonospora. Int. J. Syst. Bacteriol. 46:383-387 https://doi.org/10.1099/00207713-46-2-383
  21. Korn, F., Weingartner, B. and Kutzner, H. J. 1978. A study of twenty actinophages: Morphology, serological relationship and host range. In: Freerksen, E., Tamok, I. and Thumin, J. (ed.), Genetics of the Actinomycetales. pp. 251-27. Gustav Fisher Verlag, Stuttgart
  22. Kroppenstedt, R. M. 1985. Fatty acid and menaquinone analysis of actinomycete and related organisms. In: Chemical Methods in Bacterial Systematics, ed. by M. Goodfellow and D. E. Minnikin, pp. 369-379. Academic Press, London
  23. Lee, J. Y. and Hwang, B. K. 2002. Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can. J. Microbiol. 48:407-417 https://doi.org/10.1139/w02-025
  24. Lee, S. D., Goodfellow, M. and Hah, Y. C. 1999. A phylogenetic analysis of the genus Catellatospora based on 16S ribosomal DNA sequence, including transfer of Catellatospora matsumotoense to the genus Micromonospora as Micromonospora matsumotoense comb. Nov. FEMS Microbiol. Lett. 178:349-354 https://doi.org/10.1111/j.1574-6968.1999.tb08698.x
  25. Locci, R. 1989. Streptomycetes and related genera. In: Bergey's Manual of Systermatic Bacteriology. Vol. 4, ed. by S. T. Williams, M. E. Sharpe and J. G Holt, pp. 2451-2508. Williams and Wilkins, Baltimore
  26. Mohamed, M.E.S., Ismail, W., Heider, J. and Fuchs, G 2002. Aerobic metabolism of phenylacetic acids in Azoarcus evansii. Arch. Microbiol. 178: 180-192 https://doi.org/10.1007/s00203-002-0438-y
  27. Okami, Y. and Hotta, K. 1988. Search and discovery of new antibiotics. In: Actinomycetes in Biotechnology, ed. by M. Goodfellow, S. T. Williams and M. Mordarski, pp. 33-67. Academic Press, London
  28. Olivera, E. E., Mifiambres, B., Garcia, B., Muniz, C., Moreno, M. A., Ferrandez, A., Diaz, E., Garcia, J. L. and Luengo, J. M., 1998. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylaceylcoA catabolism. Proc. Nati. Acad. Sci. USA 95:6419-6424
  29. Pagani, H., Lancini, G, Tamoni, G. and Coronelli, C. 1973. Tetrenolin and SS/1018A, antimicrobial agents isolated from a strain of Actinomycetales. J. Antibiot. 26: 1-6 https://doi.org/10.7164/antibiotics.26.1
  30. Page, R. D. M. 1996. TREEVIEW: an application to display phylogenetic trees on personal compuers. Computer Appl. Biosci. 12:357-358
  31. Pospiech, A. and Neumann, B. 1995. A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trend. Genet. 11: 217-218 https://doi.org/10.1016/S0168-9525(00)89052-6
  32. Pridham, T. G, Hesseltine, C. W. and Benedict, R. G. 1958. A guide for classification of Streptomycetes according to selected groups placement of strains in morphological sections. Appl. Microbiol. 6:52-79
  33. Rost, R., Haas, S., Hammer, E., Herrmann, H. and Brchhardt, G. 2002. Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii. Mol. Genet. Genomics 267:656-663 https://doi.org/10.1007/s00438-002-0699-9
  34. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425
  35. Sambrook, J. and Russel, D. W. 2001. Molecular Cloning Vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  36. Satoi, S., Muto, N., Hayashi, M., Fujii, T. and Otani, M. 1980. Mycinamicins, new macrolide antibiotics. I. Taxonomy, production, isolation, characterization and properties. J. Antibiot. 33:364-376 https://doi.org/10.7164/antibiotics.33.364
  37. Schaad, K. P. 1985. Identifcation of clinically signification actinomycetes and related bacteria using chemical techniques. In: Chemical Methods in Bacterial Systematics, ed. by M. Goodfellow and D. E. Minnikin, pp. 173-199. Academic Press, London
  38. Shafiee, A., Harris, G, Motarnedi, H., Rosenbach, M., Chen, T., Zink, D. and Heimbuch, B. 2001. Microbial hydroxylation of rustmicin (galbonolide A) and galbonolide B, two antifungal products produced by Micromonospora sp. J. Mol. Catal. B 11:237-242 https://doi.org/10.1016/S1381-1177(00)00067-9
  39. Shirling, E. B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16:313-340 https://doi.org/10.1099/00207713-16-3-313
  40. Swofford, D. 2002. PAUP 4.0B10. Phylogenetic analysis using parsimony (and other methods). Sunderland, MA: Sinauer Associates
  41. Tamotsu, F., Isao, M., Nobuo, M., Shigeru, Y., Totaro, Y., Katsuo, T. and Tomoharu, O. 1977. Macrolide antibiotics M-4365 produced by Micromonospora. I. Taxonomy, production, isolation, characterization and properties. J. Antibiot. 30:443-449 https://doi.org/10.7164/antibiotics.30.443
  42. Tanaka, Y. T. and Omura, S. 1993. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 47:57-87 https://doi.org/10.1146/annurev.mi.47.100193.000421
  43. Thompson, J. D., Higgins, D. G and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
  44. Toutaro, Y., Haruo, H., Hirotsugu, Y., Tadahiro, M., Akemi, Y. and Satoshi, O. 1978. Macrolide antibiotics M-4365 produced by Micromonospora. III. In vitro antimicrobial activity of antibiotic M-4365G2. J. Antibiot, 31 :433-440 https://doi.org/10.7164/antibiotics.31.433
  45. Vobis, G. 1991. The genus Actinoplanes and related genera. In: The Prokaryotes, ed. by A. Balows, H. G. Truper, M. Dworkin, W. Harder and K. H. Schleifer, pp. 1029-1060. Springer-Verlag. New York
  46. Wagman, G. H., Marquez, J. A, Watkins, P. D., Bailey, J. V., Gentile, F. and Weinstein, M. J. 1973. Neomycin production by Micromonospora species 69-683. J. Antibiot. 26:732-736 https://doi.org/10.7164/antibiotics.26.732
  47. Wagman, G H. and Weinstein, M. J. 1980. Antibiotics from Micromonospora. Annu. Rev. Microbiol. 34:537-557 https://doi.org/10.1146/annurev.mi.34.100180.002541
  48. Weinstein, M. J., Luedemann, G. M., Oden, E. M. and Wagman, G. H. 1964. Gentamicin, a new broad spectrum antibiotic complex. Antimicrob. Agents Chemother. 161: 1-7
  49. Weinstein, M. J., Luedemann, G M., Oden, E. M. and Wagman, G. H. 1968. Halomicin, a new Micromonospora-produced antibiotic. Antimicrobial Agents and Chemotherapy Antimicrob. Agents Chemother. 7:435-441
  50. Weisburg, W G, Barns, S. M., Pelletier, D. A and Lane, D. J. 1991. 16S ribosomal DNA amplification from phylogenetic study. J. Bacteriol. 173:697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  51. Welsch, M. 1942. Bacteriostatic and bacteriolotic properties of actinomycetes. J. Bacteriol. 44:571-588
  52. Williams, S. T. and Davies, F. L. 1967. Use of scanning electron microscope for the examination of actinomycetes. J. Gen. Microbiol. 48: 171-177 https://doi.org/10.1099/00221287-48-2-171
  53. Williams, S. T., Goodfellow, M., Alderson, G, Wellington, E. M. H., Sneath, P. H. A. and Sackin, M. J. 1983a. Numerical classification of streptomyces and related genera. J. Gen. Microbiol. 129:1743-1813
  54. Williams, S. T., Goodfellow, M., Wellington, E. M. H., Vickers, J. C., Alderson, G, Sneath, P. H. A, Sackin, M. J. and Mortimer, A M. 1983b. A probability matrix for identification of Streptomycetes. J Gen. Microbiol. 129:1815-1830
  55. Wu, R. Y., Yang, L. M., Yokoi, T. and Lee, K. H. 1988. Neihumicin, a new cytotoxic antibiotic from Micromonospora neihuensis. I. The producing organism, fermentation, isolation and biological properties. J. Antibiot. 41 :481-487 https://doi.org/10.7164/antibiotics.41.481
  56. Wu, W, Welsh, M. J., Kaufman, P. B. and Zhang, H. H. 1997. Subcloning of DNA fragments. In: Method in Gene Biotechnology, ed. by W. Wu, M. J. Welsh, P. B. Kaufman and H. H. Zhang, pp. 15-28. CRC Press, Boca Raton, New York

Cited by

  1. Microbial Fungicides in the Control of Plant Diseases vol.155, pp.11-12, 2007, https://doi.org/10.1111/j.1439-0434.2007.01314.x