• 제목/요약/키워드: bone matrix expression

검색결과 173건 처리시간 0.03초

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.

하이드로젤 지지체 기반 3차원 환경에서 개 간엽줄기세포의 분화능 분석 (Differentiation potential of canine mesenchymal stem cells on hydrogel scaffold-based three-dimensional environment)

  • 구나연;박미정;이지현;변정수;정다운;조인수;차상호
    • 대한수의학회지
    • /
    • 제58권4호
    • /
    • pp.211-217
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy. Physiological cell environment not only connects cells to each other, but also connects cells to the extracellular matrix that provide mechanical support, thus exposing the entire cell surface and activating signaling pathways. Hydrogel is a polymeric material that swells in water and maintains a distinct 3-dimensional (3D) network structure by cross linking. In this study, we investigated the optimized cellular function for canine adipose tissue-derived MSCs (cAD-MSCs) using hydrogel. We observed that the expression levels of Ki67 and proliferating cell nuclear antigen, which are involved in cell proliferation and stemness, were increased in transwell-hydrogel (3D-TN) compared to the transwell-normal (TN). Also, transforming growth factor-${\beta}1$ and SOX9, which are typical bone morphogenesis-inducing factors, were increased in 3D-TN compared to the TN. Collagen type II alpha 1, which is a chondrocyte-specific marker, was increased in 3D-TN compared to the TN. Osteocalcin, which is a osteocyte-specific marker, was increased in 3D-TN compared to the TN. Collectively, preconditioning cAD-MSCs via 3D culture systems can enhance inherent secretory properties that may improve the potency and efficacy of MSCs-based therapies for bone regeneration process.

Substrate-immobilized bone morphogenic protein-7 peptides on titanium surface support the expression of extracellular matrix proteins

  • 김영준;정찬길;최득철
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.627-637
    • /
    • 2006
  • 이 연구는 rh BMP-7-immobilized substrates에 대한 백서 태자 두개관 세포의 반응을 석회화 결절 측정, 알카리 효소 분석, 역전사 중합반응 및 단백질 분석등으로 평가하여 다음과 같은 결과를 얻었다. 1. 배양 14일 째, 석회화 결절 형성율을 측정한 결과, rh BMP-7-immobilized substrates에서 대조군과 비교하여 더 많은 석회화 결절을 형성하였다. 2. 배양 7일에 염기성 인산 분해효소 활성도는 rh BMP-7-immobilized substrates에서 대조군에 비해 효소 활성도가 유의하게 높았다. 3. 역전사 중합반응의 결과에서 BSP 와 OCN 유전자 발현은 대조군보다 더 현저하였다. 4. 단백질 분석에서 rh BMP-7-immobilized substrates와 대조군 모두 Smad 1,5,8 단백질의 인산화를 활성화시키지 못했다. 이상의 결과 rh BMP-7-immobilized substrates는 백서 태자 두개관세포가 조골세포로의 분화와 석회화를 유도하며 따라서 rh BMP-7-immobilized substrates는 임프란트 주변의 골 형성에 유용하리라 사료된다.

기계적 자극과 interleukin-$1{\beta}$가 치주인대 섬유아세포의 collagenase와 TIMP-1의 발현에 미치는 영향 (Effects of mechanical stress and interleukin-$1{\beta}$ on collagenase and TIMP-1 expression in human periodontal ligament fibroblasts)

  • 김명립;배창
    • 대한치과교정학회지
    • /
    • 제28권1호
    • /
    • pp.165-174
    • /
    • 1998
  • 교정력이 치아에 가해지면 치주인대의 재생과 치조골의 개조가 일어난다. 치주인대 섬유아세포는 collagenase와 TIMP-1을 분비하여 치주조직의 교원질의 분해와 합성을 담당한다. 본 연구에서는 치주인대 섬유아세포예 기계적 자극과 interleukin-$1{\beta}$를 가해 collagenase와 TIMP-1의 발현을 RT-PCR과 면역조직화학 염색을 사용하여 알아보았다. 4명의 10대 남자 교정환자에게서 아무런 병소가 없는 제1소구치를 발치후 치주인대 섬유아세포를 배양하여 4-6세대의 세포를 사용하였다. 대조군, $Petriperm dish^{\circledR}$ 바닥의 표면적을 $5\%$ 증가시킨 기계적 자극을 가한 군, interleukin-$1{\beta}$를 1.0 ng/ml를 가한 군과 기계적 자극과 interleukin-$1{\beta}$를 같이 가한 군으로 나누어 4명의 환자에서 얻은 세포군을 각 군별로 2, 4, 8시간 후 RT-PCR을 시행하여 그 산물을 반정량하여 대조군에 대한 각 실험군의 상대적인 증감을 나타내었고, 24시간후 면역조직화학 염색을 시행하여 다음과 같은 결과를 얻었다. 1. 광학 현미경으로 세포의 형태를 관찰한 결과 대조군에서는 전형적인 별모양과 길쭉한 모양을 함께 보였으나 기계적 자극과 interleukin-$1{\beta}$를 각각 혹은 동시에 준 군들에서는 별모양의 세포가 사라지고 모양이 더욱 길어졌다. 2. collagenase는 대조군에 비해 기계적 자극과 interleukin-$1{\beta}$를 각각 혹은 동시에 준 군들에서 증가하였고, 실험 8시간 후에서는 interleukin-$1{\beta}$를 준 군, 기계적 자극과 interleukin-$1{\beta}$를 동시에 준 군에서 뚜렷한 증가를 보였다. 3. TIMP-1은 세포 자극 2, 4시간 후에는 대조군에 비해 기계적 자극과 interleukin-$1{\beta}$를 각각 혹은 동시에 준 군들에서 감소하였지만, 실험 8시간 후에서는 증가를 보였다. 4. 면역조직화학 염색을 통해 collagenase와 TIMP-1이 대조군에 비해 기계적 자극과 interleukin-$1{\beta}$를 각각 혹은 동시에 준 군들에서 더욱 강한 염색상을 나타내었다. 본 실험의 결과 섬유아세포는 외부 자극이 가해지면 collagenase와 TIMP-1의 발현 조절을 통해 치주인대 재생과 치조골의 개조에 영향을 미쳐 항상성을 유지하려고 함을 알 수 있었다.

  • PDF

Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect

  • Ge, Qing;Green, David William;Lee, Dong-Joon;Kim, Hyun-Yi;Piao, Zhengguo;Lee, Jong-Min;Jung, Han-Sung
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1016-1023
    • /
    • 2018
  • Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to up-regulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.

사람의 골수 줄기 세포로부터의 골세포 분화 과정에서 BMP-2가 미치는 영향과 그에 따른 분화 유전자의 발현 비교 연구 (THE EFFECT OF RHBMP-2 IN HUMAN BONE MARROW-DERIVED STEM CELLS AS OSTEOGENIC INDUCERS)

  • 김인숙;장옥련;조태형;이규백;박용두;노인섭;;황순정;김명진;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권1호
    • /
    • pp.16-23
    • /
    • 2005
  • It is commonly acknowledged that bone morphogenic protein (BMP-2) functions as a potential osteogenic inducer in bone formation. Recently, several papers reported that bone marrow-derived stem cell (BMSC) from human is not responsive to BMP-2 in comparison to high capacity of BMP-2 in the osteoinduction of stromal cell derived from bone marrow of rodent animals such as rat or mouse. In this study, we characterized BMSC derived from 11 years old donor for the responsiveness to rhBMP-2, dexamethasone (Dex) and 1,25-dihydroxyvitamin D (vitamin D), in order to analyze their function in the early osteogenesis. The effect of over mentioned agents was evaluated by means of assessing alkaline phosphatase (ALP) activity/staining, RT-PCR analysis and von Kossa staining. In addition, we analyzed the meaning of expressed several osteoblastic markers such as alkaline phosphatase, collagen typeI, osteopontin, bone sialoprotein and osteocalcin with relation to either differentiation or mineralization. Only in the presence of Dex, human BMSC could commit osteoblastic differentiation and matrix mineralization, and either BMP-2 or vitamin D treatment was not able to induce. But BMP-2 or Vitamin D showed potential synergy effect with Dex. ALP and bone sialoprotein were clearly expressed in response of Dex treatment compared to weak expression of osteopontin in early osteogenesis. Therefore, we expect that this study will contribute partly to elucidiating early osteogenesis mechanism in human, but variations among bone marrow donors must be considered through further study.

계대 배양 속도가 다른 과잉치 치수유래 줄기세포 간 유전자 발현 특성 (Gene Expression of Supernumerary Dental Pulp Related to the Subculture Speed: A Pilot Study)

  • 이유경;김종수;신지선;김종빈
    • 대한소아치과학회지
    • /
    • 제46권2호
    • /
    • pp.219-225
    • /
    • 2019
  • 이 연구의 목적은 과잉치 치수 유래 줄기세포의 계대 배양 속도에 대한 상아모세포 연관 유전자의 발현을 비교하는 것이다. 줄기세포는 다른 여러 형태의 세포로 분화할 수 있는 미 분화된 세포이다. 이는 환경이나 특정 자극에 의해 세포 분열이 일어나며 근육이나 골 같은 특정 장기의 조직으로 분화할 수 있다. 20명의 어린이에서 발거한 과잉치에서 과잉치 치수 유래 줄기세포가 얻어졌다. 10계대까지 배양하는 동안 가장 빠른 속도로 계대 배양된 세포와 가장 느린 속도로 계대 배양된 세포 각 3계대와 10계대 세포를 얻어 실험을 진행하였다. 각 세포는 분화제를 처리한 군과 처리하지 않은 군으로 나누었다. 이 실험에서 발현도를 살펴본 유전자는 Osteonectin (ONT), Osteocalcin (OCN), Alkaline Phosphatase (ALP), Dentin matrix acidic phosphoprotein 1 (DMP-1), Dentin sialophosphoprotein (DSPP)이다. 분화가 된 세포가 전반적으로 더 높은 유전자 발현도를 보였으며, 미분화 세포는 10계대에서, 분화된 세포는 3계대에서 더 높은 유전자 발현도를 보였다. 빠른 계대 배양 속도를 보인 세포가 OCN과 DSPP를 제외하고 상대적으로 더 낮은 유전자 발현도를 보였다.

Naringin enhances the migration and osteogenic differentiation of human dental pulp stem cells

  • Yeon, Kim;Hyun-Joo, Park;Mi-Kyoung, Kim;Yong-Il, Kim;Soo-Kyung, Bae;Hyung Joon, Kim;Moon-Kyoung, Bae
    • International Journal of Oral Biology
    • /
    • 제47권4호
    • /
    • pp.55-62
    • /
    • 2022
  • Bioactive flavonoids have been shown to improve the biological activity of stem cells derived from different sources in tissue regeneration. The goal of this study was to see how naringin, a natural flavonoid discovered in citrus fruits, affected the biological properties of human dental pulp stem cells (HDPSCs). In this study, we found that naringin increases the migratory ability of HDPSCs. Naringin increased matrix metalloproteinase-2 (MMP-2) and C-X-C chemokine receptor type 4 (CXCR4) mRNA and protein expression in HDPSCs. ARP100, a selective MMP-2 inhibitor, and AMD3100, a CXCR4 antagonist, both inhibited the naringin-induced migration of HDPSCs. Furthermore, naringin increased osteogenic differentiation of HDPSCs and the expression of the osteogenic-related marker, alkaline phosphatase in HDPSCs. Taken together, our findings suggest that naringin may be beneficial on dental tissue or bone regeneration by increasing the biological activities of HDPSCs.

Effects of Lactobacillus reuteri MG5346 on Receptor Activator of Nuclear Factor-Kappa B Ligand (RANKL)-Induced Osteoclastogenesis and Ligature-Induced Experimental Periodontitis Rats

  • Yu-Jin Jeong;Jae-In Jung;YongGyeong Kim;Chang-Ho Kang;Jee-Young Imm
    • 한국축산식품학회지
    • /
    • 제43권1호
    • /
    • pp.157-169
    • /
    • 2023
  • Effects of culture supernatants of Lactobacillus reuteri MG5346 (CS-MG5346) on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis were examined. CS-MG5346 treatment up to 400 ㎍/mL significantly reduced tartrate-resistant acid-phosphatase (TRAP) activity, the phenotype biomarker of osteoclast, without affecting cell viability. CS-MG5346 inhibited the expression of osteoclast specific transcriptional factors (c-fos and nuclear factor-activated T cells c1) and their target genes (TRAP, cathepsin, and matrix metallo-proteinase-9) in a dose-dependent manner (p<0.05). The administration of L. reuteri MG5346 (2×108 CFU/day) for 8 wks significantly improved furcation involvement, but no difference was observed in alveolar bone loss in ligature-induced experimental periodontitis rats. The elevated RANKL/osteoprotegerin ratio, the biomarker of periodontitis, was significantly lowered in the gingival tissue by administration of L. reuteri MG5346 (p<0.05). L. reuteri MG5346 showed excellent stability in simulated stomach and intestinal fluids and did not have antibiotic resistance. Based on the results, L. reuteri MG5346 has the potential to be a promising probiotic strain for oral health.