Substrate-immobilized bone morphogenic protein-7 peptides on titanium surface support the expression of extracellular matrix proteins

  • Kim, Young-Joon (Department of Periodontology, School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Chung, Chan-Gil (Department of Periodontology, School of Dentistry, Chonnam National University) ;
  • Cui, De-Zhe (Dental Science Research Institute, Chonnam National University)
  • 김영준 (전남대학교 치의학전문대학원 치주과학 교실, 치의학 연구소) ;
  • 정찬길 (전남대학교 치의학전문대학원 치주과학 교실) ;
  • 최득철 (전남대학교 치의학 연구소)
  • Published : 2006.09.30

Abstract

이 연구는 rh BMP-7-immobilized substrates에 대한 백서 태자 두개관 세포의 반응을 석회화 결절 측정, 알카리 효소 분석, 역전사 중합반응 및 단백질 분석등으로 평가하여 다음과 같은 결과를 얻었다. 1. 배양 14일 째, 석회화 결절 형성율을 측정한 결과, rh BMP-7-immobilized substrates에서 대조군과 비교하여 더 많은 석회화 결절을 형성하였다. 2. 배양 7일에 염기성 인산 분해효소 활성도는 rh BMP-7-immobilized substrates에서 대조군에 비해 효소 활성도가 유의하게 높았다. 3. 역전사 중합반응의 결과에서 BSP 와 OCN 유전자 발현은 대조군보다 더 현저하였다. 4. 단백질 분석에서 rh BMP-7-immobilized substrates와 대조군 모두 Smad 1,5,8 단백질의 인산화를 활성화시키지 못했다. 이상의 결과 rh BMP-7-immobilized substrates는 백서 태자 두개관세포가 조골세포로의 분화와 석회화를 유도하며 따라서 rh BMP-7-immobilized substrates는 임프란트 주변의 골 형성에 유용하리라 사료된다.

Keywords

References

  1. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. J Bone Joint Surg, Am. 2002;84A: 1032-1043
  2. Wozeyu JM, Rosen V. Bone morphogenetic protein and bone morphognetic protein gene family in boen formation and repair. Clin Orthop Relat Res 1998;346:26-38
  3. Mont MA, Ragland PS, Biggins B, et al Use of bone morphogenetic proteins for mucoskeletal applications. An overview. J Bone Joint Surg, Am. 2004;86A(suppl 2):41-51
  4. Rutheford RE, Sampath TK, Rueger DC, Taylor TD. Use of bovine osteogenic protein to promote rapid osseointegration of endosseous dental implants. Int J Oral Maxillofac implants 1992;7:297-301
  5. Xiang W, Baolin L, Yan J, Yang X. The effect of bone morphogenetic protein on osseointegration of titanium implants. Int J Oral Maxillofac Surg 1993;51:647-651 https://doi.org/10.1016/S0278-2391(10)80264-2
  6. Davis JE, Lowenberg B, Shiga A. The bone-titanium interface in vitro. J Biomed Mater Res 1990;24:1289-1306 https://doi.org/10.1002/jbm.820241003
  7. Cooper LF, Masuda T, Whitson SW, Yliheikkila P, Felton DA. Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. Int J Oral Maxillofac Implants 1999;14:37-47
  8. Yliheikkila P, Felton DA, Whitson SW, et al, Correlative microscopic investigation of the interface between titanium alloy and the osteoblast-osteoblast matrix using mineralizing cultures of primary feal bovine mandibular osteoblasts. Int J Oral Maxillofac Implants 1995;10:655-665
  9. Giannobile WV. Periodontal tissue en gineering by growth factors. Bone 1996;19 (suppl): 23S-37S https://doi.org/10.1016/S8756-3282(96)00127-5
  10. Puleo DA. Activity of enzyme immobilized on silanized Co-Cr-Mo. J Biomed Mater Res 1995;29:951-957 https://doi.org/10.1002/jbm.820290806
  11. Puleo DA. Bizios R. RGDs tetrapeptide binds to osteoblasts and inhibits fibronectin -mediated adhesion. Bone 1991;12:271-276 https://doi.org/10.1016/8756-3282(91)90075-T
  12. Dee KC, Rueger DC, Andersen TI, Bizios R. Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials 1996;17:209-215 https://doi.org/10.1016/0142-9612(96)85765-6
  13. Dee KC, Andersen TT, Bizios R. Design and function of novel osteoblast-adhesive peptides for chemical rmdification of biomaterials. J Biomed Mater Res 1998:40:371-377 https://doi.org/10.1002/(SICI)1097-4636(19980605)40:3<371::AID-JBM5>3.0.CO;2-C
  14. Dee KC, Andersen TT, Bizios R. Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides. Bio materials 1999;20:221-227 https://doi.org/10.1016/S0142-9612(98)00161-6
  15. Kirkwood K, Rheude B, Kim YJ, White K, Dee KC. In vitro mineralization studies with substrate-immobolized bone morphogenetic protein peptides. J Oral Implantol 2003;29:57-65 https://doi.org/10.1563/1548-1336(2003)029<0057:IVMSWS>2.3.CO;2
  16. Bretaudiere JP, Spillman T. Alkaline phosphatase. In: Bergmeyer HU, ed, Methods of Enzymatic Analysis, vol 4. Weinheim: Verlag Chemica 1984:75-92
  17. Kossovsky N. It's a great new material, but will the body accept it? Research Devel 1989:July:48-54
  18. Ratner BD. Society for biomaterials 1992 Presidental address: New ideas in biomaterials science-a path to engineered biomaterials. J Biomed Mater Res 1993:27: 837-850 https://doi.org/10.1002/jbm.820270702
  19. Wozney JM, Rosen V, Celeste AJ et al, Novel regulators of bone formation.: Molecular and activities. Science 1988;242:1528-1534 https://doi.org/10.1126/science.3201241
  20. Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res 1991;263:30-48
  21. Mundy GRCytokines and growth factors in the regulation of bone remodeling. J Bone Mineral Res 1993;8(suppl) :S505-S510 https://doi.org/10.1002/jbmr.5650081315
  22. Freshney R. Culture of animal cells: a manual of basic technique, 3rd edition, 1994, NY; Wiley-Liss, Inc.
  23. Schmalz G. Use of cell cultures for toxicity testing of dental materials-advantages and limitations. J Dent 1994;22(suppl 2):S6-S11 https://doi.org/10.1016/0300-5712(94)90032-9
  24. Lang H, Mertens T. The use of cultures of human osteoblast-like cells as an in vitro test system for dental materials. J Oral Maxillofac Surg 1990;48:606-611 https://doi.org/10.1016/S0278-2391(10)80475-6
  25. Luben RA, Wong GL, Cohn DV. Biochemical characterization with parathyroid hormone and calcitonin of isolated bone cells: provisional identification of osteoclasts and osteoblasts. Endocrinology 1976;99:526-534 https://doi.org/10.1210/endo-99-2-526
  26. Genge BR, Sauer GR, Wu LNY, Mclean FM, Wuthier RE. Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle mediated mineralization. J BioI Chem 1988;263: 18513-18519
  27. Beertsen W, Van den Bos T. Calcification of dental collagen by cultured rabbit periosteum: The role of alkaline phosphatase. Matrix 1989;9:159-171 https://doi.org/10.1016/S0934-8832(89)80035-6
  28. Beertsen W, Van den Bos T. Alkaline phosphatase induces the deposition of calcified layers in relation to dentin: An in vitro study to mimic the formation of afibrillar acellular cementum. J Dent Res. 1991;70: 176-181 https://doi.org/10.1177/00220345910700030401
  29. Beertsen W, Van den Bos T. Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat. J Clin Invest 1992;89: 1974-1980 https://doi.org/10.1172/JCI115805
  30. Ogata Y, Yamauchi M, Kim RH, Li JJ, Fredman LP, Sodek J, Glucocorticoid regulation of bone sialoprotein (BSP) gene expression: Identification of a glucocorticoid response element in the bone sialoprotein gene promoter. Eur J Biochem 1995;230: 183-192 https://doi.org/10.1111/j.1432-1033.1995.0183i.x
  31. Oldburg A, Frazen A, Heingard D. The primary structure of a cell-binding bone sialoprotein. J BioI Chem 1988;263: 19430-19432
  32. Chen J, Shapiro HS, Sadek J. Developmental 636 expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 1992;7:987-997 https://doi.org/10.1002/jbmr.5650070816
  33. Ganss B, Kim RH, Sadek J. Bone sialoprotein. Crit Rev Oral BioI Med 1999; 10: 79-98 https://doi.org/10.1177/10454411990100010401
  34. Hunter GK, Goldburg HA, Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA 1993;90:8562-8565
  35. King GN, Cochran DL, Factors That Modulate the effects of bone morphogenetic protein-induced periodontal regeneration: A critical review. J Periodontol 2002;73: 925-936 https://doi.org/10.1902/jop.2002.73.8.925
  36. von Bubnoff A, Cho K:NY, Intracellular BMP signalling regulation in vertebrates: pathway or network? Dev BioI 2001;239:1-14 https://doi.org/10.1006/dbio.2001.0388