DOI QR코드

DOI QR Code

Gene Expression of Supernumerary Dental Pulp Related to the Subculture Speed: A Pilot Study

계대 배양 속도가 다른 과잉치 치수유래 줄기세포 간 유전자 발현 특성

  • Lee, Yookyung (Department of Pediatric Dentistry, School of Dentistry, Dankook University) ;
  • Kim, Jongsoo (Department of Pediatric Dentistry, School of Dentistry, Dankook University) ;
  • Shin, Jisun (Department of Pediatric Dentistry, School of Dentistry, Dankook University) ;
  • Kim, Jongbin (Department of Pediatric Dentistry, School of Dentistry, Dankook University)
  • 이유경 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실) ;
  • 신지선 (단국대학교 치과대학 소아치과학교실) ;
  • 김종빈 (단국대학교 치과대학 소아치과학교실)
  • Received : 2018.10.13
  • Accepted : 2018.11.28
  • Published : 2019.05.31

Abstract

The purpose of this study was to investigate the odontoblast gene expression related to the subculture speed of supernumerary dental pulp stem cells (sDPSCs). The stem cell is undifferentiated cells which has the ability to differentiate into various cells. Specific stimulation or environment induces cell differentiation, and these differentiation leads to bone or muscle formation. 20 sDPSCs were obtained from 20 children under aseptic condition. During the culture through the 10th passage, the third passage cells which showed short subculture period and 10th passage cells which showed long subculture period were earned. Each cell was divided into differentiated group and non-differentiated group. Quantitative real-time polychain reaction (q-RT-PCR) was performed for each group. The genes related to odontoblast differentiation, Alkaline Phosphatase (ALP), Osteocalcin (OCN), Osteonectin (ONT), Dentin sialophosphoprotein (DSPP) and Dentin matrix acidic phosphoprotein 1 (DMP-1), were measured. Differentiated cells showed more gene expression levels. Undifferentiated cells showed higher gene expression level in 10th passages but differentiated cells showed higher gene expression level in 3rd passages. Cells that showed faster subculture period showed relatively lower gene expression level except for OCN and DSPP.

이 연구의 목적은 과잉치 치수 유래 줄기세포의 계대 배양 속도에 대한 상아모세포 연관 유전자의 발현을 비교하는 것이다. 줄기세포는 다른 여러 형태의 세포로 분화할 수 있는 미 분화된 세포이다. 이는 환경이나 특정 자극에 의해 세포 분열이 일어나며 근육이나 골 같은 특정 장기의 조직으로 분화할 수 있다. 20명의 어린이에서 발거한 과잉치에서 과잉치 치수 유래 줄기세포가 얻어졌다. 10계대까지 배양하는 동안 가장 빠른 속도로 계대 배양된 세포와 가장 느린 속도로 계대 배양된 세포 각 3계대와 10계대 세포를 얻어 실험을 진행하였다. 각 세포는 분화제를 처리한 군과 처리하지 않은 군으로 나누었다. 이 실험에서 발현도를 살펴본 유전자는 Osteonectin (ONT), Osteocalcin (OCN), Alkaline Phosphatase (ALP), Dentin matrix acidic phosphoprotein 1 (DMP-1), Dentin sialophosphoprotein (DSPP)이다. 분화가 된 세포가 전반적으로 더 높은 유전자 발현도를 보였으며, 미분화 세포는 10계대에서, 분화된 세포는 3계대에서 더 높은 유전자 발현도를 보였다. 빠른 계대 배양 속도를 보인 세포가 OCN과 DSPP를 제외하고 상대적으로 더 낮은 유전자 발현도를 보였다.

Keywords

References

  1. Meighani G, Pakdaman A : Diagnosis and management of supernumerary (mesiodens): a review of the literature. J Dent (Tehran), 7:41-49, 2010.
  2. Van Buggenhout G, Bailleul-Forestier I : Mesiodens. Eur J Med Genet, 51:178-181, 2008. https://doi.org/10.1016/j.ejmg.2007.12.006
  3. Rajab LD, Hamdan MA : Supernumerary teeth: review of the literature and a survey of 152 cases. Int J Paediatr Dent, 12:244-254, 2002. https://doi.org/10.1046/j.1365-263X.2002.00366.x
  4. Russell KA, Folwarczna MA : Mesiodens-diagnosis and management of a common supernumerary tooth. J Can Dent Assoc, 69:362-366, 2003.
  5. Potdar PD, Jethmalani YD : Human dental pulp stem cells: applications in future regenerative medicine. World J Stem Cells, 7:839-851, 2015. https://doi.org/10.4252/wjsc.v7.i5.839
  6. Shi S, Gronthos S : Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 18:696-704, 2003. https://doi.org/10.1359/jbmr.2003.18.4.696
  7. Huang AH, Chen YK, Chan AW, et al. : Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med, 37:571-574, 2008. https://doi.org/10.1111/j.1600-0714.2008.00654.x
  8. Gronthos S, Brahim J, Shi S, et al. : Stem cell properties of human dental pulp stem cells. J Dent Res, 81:531-535, 2002. https://doi.org/10.1177/154405910208100806
  9. Mauth C, Huwig A, Graf-Hausner U, Roulet JF : Restorative applications for dental pulp therapy. Topics in Tissue Engineering, 3:1-32, 2007.
  10. Min JH, Ko SY, Jang YJ, et al. : Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Hum Cell, 24:43-50, 2011. https://doi.org/10.1007/s13577-011-0010-7
  11. Qin C, Brunn JC, Butler WT, et al. : The expression of dentin sialophosphoprotein gene in bone. J Dent Res, 81:392-394, 2002. https://doi.org/10.1177/154405910208100607
  12. Yu J, Wang Y, Jin Y, et al. : Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell, 99:465-474, 2007. https://doi.org/10.1042/BC20070013
  13. Tziafas D, Kodonas K : Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod, 36:781-789, 2010. https://doi.org/10.1016/j.joen.2010.02.006
  14. Kenneth J, Thomas D : Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25:402-408, 2001. https://doi.org/10.1006/meth.2001.1262
  15. About I, Bottero MJ, Mitsiadis TA, et al. : Human dentin production in vitro. Exp Cell Res, 258:33-41, 2000. https://doi.org/10.1006/excr.2000.4909
  16. Inagaki Y, Kashima TG, Athanasou NA, et al. : Dentine matrix protein 1 (DMP-1) is a marker of bone formation and mineralisation in soft tissue tumours. Virchows Arch, 466:445-452, 2015. https://doi.org/10.1007/s00428-014-1706-3
  17. Stefkova K, Prochazkova J, Pachernik J : Alkaline Phosphatase in Stem Cells. Stem Cells Int, 2015:628368, 2015. https://doi.org/10.1155/2015/628368
  18. Liu Q, Cen L, Cui L, et al. : A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials, 29:4792-4799, 2008. https://doi.org/10.1016/j.biomaterials.2008.08.039
  19. Bruder SP, Jaiswal N, Haynesworth SE : Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 64:278-294, 1997. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
  20. Yamamoto R, Oida S, Yamakoshi Y : Dentin Sialophosphoprotein-derived Proteins in the Dental Pulp. J Dent Res, 94:1120-1127, 2015. https://doi.org/10.1177/0022034515585715
  21. von Marschall Z, Fisher LW : Dentin sialophosphoprotein (DSPP) is cleaved into its two natural dentin matrix products by three isoforms of bone morphogenetic protein-1 (BMP1). Matrix Biol, 29:295-303, 2010. https://doi.org/10.1016/j.matbio.2010.01.002
  22. Suzuki S, Haruyama N, Nishimura F, Kulkarni AB : Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol, 57:1165-1175, 2012. https://doi.org/10.1016/j.archoralbio.2012.03.005
  23. Termine JD, Kleinman HK, Martin GR, et al. : Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26:99-105, 1981. https://doi.org/10.1016/0092-8674(81)90037-4
  24. Lee NK, Sowa H, Karsenty G, et al. : Endocrine regulation of energy metabolism by the skeleton. Cell, 130:456-469, 2007. https://doi.org/10.1016/j.cell.2007.05.047
  25. Aslantas EE, Buzoglu HD, Aksoy Y, et al. : Age-related Changes in the Alkaline Phosphatase Activity of Healthy and Inflamed Human Dental Pulp. J Endod, 42:131-134, 2016. https://doi.org/10.1016/j.joen.2015.10.003
  26. Sun HJ, Bahk YY, Lee JW : A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res, 24:2059-2071, 2006. https://doi.org/10.1002/jor.20273
  27. Stenderup K, Justesen J, Clausen C, Kassem M : Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33:919-926, 2003. https://doi.org/10.1016/j.bone.2003.07.005
  28. Nakamura S, Yamada Y, Ueda M, et al. : Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod, 35:1536-1542, 2009. https://doi.org/10.1016/j.joen.2009.07.024