• 제목/요약/키워드: bone marrow cell proliferation activity

검색결과 72건 처리시간 0.025초

Alendronate와 Pamidronate가 인간 골수유래 간엽줄기세포의 증식과 알칼리성 인산분해효소 활성에 미치는 영향 (EFFECTS OF ALENDRONATE AND PAMIDRONATE ON THE PROLIFERATION AND THE ALKALINE PHOSPHATASE ACTIVITY OF HUMAN BONE MARROW DERIVED MESENCHYMAL STEM CELLS)

  • 김영란;류동목;권용대;윤영필
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권6호
    • /
    • pp.397-402
    • /
    • 2009
  • The purpose of this study is to investigate the effects of alendronate and pamidronate on proliferation and the alkaline phosphatase activity of human bone marrow derived mesenchymal stem cells and to relate the results with bisphosphonate related osteonecrosis of the jaw(BRONJ). With the consent of patients with no systemic disease and undergoing iliac bone graft, cancellous bone was collected to obtain human bone marrow derived mesenchymal stem cells through cell culture. 96 well plate were prepared with a concentration of $10^4$cell/ well. Alendronate and pamidronate were added to each well with the concentration of $10^{-6}M$, $10^{-8}M$ and $10^{-10}M$, respectively. Then proliferation capacity of each well was evaluated with the cell counting kit. 24 well plates were prepared with a concentration of $10^5$cell/ml/well and with the bone supplement, alendronate and pamidronate were added with the concentration of $10^{-6}M$, $10^{-8}M$ and $10^{-10}M$, respectively on each plate. The plates were cultured for either 24 or 72 hours. Then the cells were sonicated to measure the alkaline phosphatase activity and protein assay was done to standardize the data for analysis. As the concentration of alendronate or pamidronate added to the culture increased, the proliferation capacity of the cells decreased. However, no statistical significance was found between the group with $10^{-10}M$ of bisphophonate and the control group. Pamidronate was not capable of increasing the alkaline phosphatase activity in all trials. However, alkaline phosphatase activity increased with 24 hours of $10^{-8}M$ of alendronate treatment and with 48 hours of $10^{-10}M$ of alendronate treatment. Cell toxicity increased as the bisphosphonate concentration increased. This seems to be associated with the long half life of bisphosphonate, resulting in high concentration of bisphosphonate in the jaw and thus displaying delayed healing after surgical procedures. Alendronate has shown to increase the alkaline phophatase activity of human bone marrow derived mesenchymal stem cells. However, this data is insufficient to conclude that alendronate facilitates the differentiation of human bone marrow derived mesenchymal stem cells. Further studies on DNA level and animal studies are required to support these results.

Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment

  • Pae, Ahran;Lee, Heesu;Noh, Kwantae;Woo, Yi-Hyung
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권2호
    • /
    • pp.96-102
    • /
    • 2014
  • PURPOSE. This study was performed to characterize the effects of zirconia coated with calcium phosphate and hydroxyapatite compared to smooth zirconia after bone marrow-derived osteoblast culture. MATERIALS AND METHODS. Bone marrow-derived osteoblasts were cultured on (1) smooth zirconia, (2) zirconia coated with calcium phosphate (CaP), and (3) zirconia coated with hydroxyapatite (HA). The tetrazolium-based colorimetric assay (MTT test) was used for cell proliferation evaluation. Scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cellular morphology and differentiation rate. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. The genetic expression of the osteoblasts and dissolution behavior of the coatings were observed. Assessment of the significance level of the differences between the groups was done with analysis of variance (ANOVA). RESULTS. From the MTT assay, no significant difference between smooth and surface coated zirconia was found (P>.05). From the SEM image, cells on all three groups of discs were sporadically triangular or spread out in shape with formation of filopodia. From the ALP activity assay, the optical density of osteoblasts on smooth zirconia discs was higher than that on surface treated zirconia discs (P>.05). Most of the genes related to cell adhesion showed similar expression level between smooth and surface treated zirconia. The dissolution rate was higher with CaP than HA coating. CONCLUSION. The attachment and growth behavior of bone-marrow-derived osteoblasts cultured on smooth surface coated zirconia showed comparable results. However, the HA coating showed more time-dependent stability compared to the CaP coating.

Bifidobacterium bifidum SL-21의 세포벽 조제성분에 의한 in vitro 골수세포 증식활성 (In vitro Bone Marrow Cell Proliferation of Cell Wall Preparation from Bifidobacterium bifidum SL-21)

  • 신명숙;유광원;신광순;이호
    • 한국식품과학회지
    • /
    • 제36권3호
    • /
    • pp.484-489
    • /
    • 2004
  • 인간의 장내 상재 세균이며 인간에게 다양한 건강 증진 효과를 부여하는 것으로 알려진 Bifidobacterium속을 유아의 분변으로부터 분리하여 세포질, 세포벽 및 배양액의 고분자 획분을 대상으로 in vitro에서 장관면역계를 경유한 골수세포 증식활성을 검토하였다 분리한 6종의 Bifidobacterium속 중에서 Bifidobacterium SL-21의 세포벽 성분(CWP)이 농도 의존적으로 가장 높은 골수세포의 증식을 나타내었다. 한편, 골수세포 증식은 Peyer's patch를 매개로 일어나는 반응이므로 Peyer's patch에 의해 생성되는 cytokine류의 활성을 측정하였다. B. bifidum SL-21의 세포벽 성분과의 반응에 의해 GM-CSF, IL-2 및 IL-6 등의 cytokine류의 생산 증가가 확인되었으며 cytokine의 생산은 반응한 세포벽 성분에 농도 의존적 경향을 보였고 골수세포 증식이 증가할수록 높은 cytokine 생산 증가를 나타냈다. 불용성인 B. bifidum SL-21 세포벽을 lysozyme 처리하여 수용화시켜 분자량에 따른 활성을 검토한 결과, 분자량 30-50 kDa의 획분에서 가장 높은 골수세포 증식활성이 측정되었다. 이와 같은 결과를 토대로 하여 B. bifidum SL-21 세포벽 성분이 Peyer's patch의 림프구를 활성화시키고 이들 활성화된 림프구에서 생성되는 cytokine류에 의해 골수세포 증식이 이루어짐을 확인할 수 있었다. 또한 이들 활성화된 면역세포는 CM-CSF, IL-2 및 IL-6 등의 전신순환 면역계의 증강에 중요한 역할을 갖는 cytokine류를 생산하였다.

창출 성분의 장관면역 자극을 통한 골수세포 증식활성 (Bone Marrow Cell Proliferation Activity through Intestinal Immune System by the Components of Atractylodes lancea DC.)

  • 유광원;신광순
    • 한국식품과학회지
    • /
    • 제33권1호
    • /
    • pp.135-141
    • /
    • 2001
  • 십전대보탕의 10가지 구성 천연물을 열수추출하여 장관면역 활성을 비교 검토한 결과, 창출(Atractylodes lancea DC., ALR)과 인삼(Panax ginseng C.A. Meyer, PG)에서는 높은 활성을 나타내었으나 약한 활성을 갖는 황기(Astragalus membranacues, ASR)와 당귀(Angelica aculiloba Kitagawa, AR)를 제외하고는 어떤 생약에서도 거의 활성을 갖지 않았다. 한편 이러한 활성을 가진 생약(ALR, PG와 ASR) 중에서도 특히 ALR만이 종류, 생산지 및 육종조건에 관계없이 항상 일정하게 높은 활성을 보여주어 창출의 열수추출물 획분(ALR-0)이 십전대보탕의 장관면역 활성에 중요하게 관여하는 시료로 선정되었다. ALR-0 획분은 다시 용매별로 분획되어 메탄올-가용성 획분(ALR-1), 메탄올-불용성/에탄올-가용성 획분(ALR-2) 및 조다당 획분(ALR-3)으로 조제되었으며 이들의 활성을 측정한 결과, 단지 ALR-3 획분만이 Peyer's patch를 통한 골수세포의 증식을 활성화시키는 장관면역 활성을 시료농도에 의존적으로 나타내었으며 그 외의 획분에는 활성이 거의 없었다. 한편 ALR-3 획분을 $NaIO_4,\;NaClO_2$ 및 pronase로 처리한 후 활성을 측정한 결과, 모든 처리군에서 활성이 감소되었으며 특히 periodate 산화에 의해 심한 활성감소를 보였다. 이러한 결과를 토대로 십전대보탕의 장관면역 활성은 10종의 생약 중에서도 특히 창출이 중요하게 활성에 관여하는 것으로 보이며 다양한 용매별 분획을 통해 저분자보다는 에탄올에 침전된 고분자가 주요 함유물질인 조다당 획분이 장관면역 활성에 관여하는 것으로 추정되었다. 또한 periodate 산화에 의해 활성이 크게 감소되는 것으로 보아 주로 다당류가 창출의 장관면역에 중요한 활성물질인 것으로 생각된다.

  • PDF

Preconditioning with repetitive electromagnetic stimulation enhances activity of bone marrow mesenchymal stem cells from elderly patients through Erk1/2 via nitric oxide

  • Seungwoo Nam;Suna Kim;Kangjun Yoon;Hyun Sook Hong;Youngsook Son
    • International Journal of Molecular Medicine
    • /
    • 제45권2호
    • /
    • pp.678-686
    • /
    • 2020
  • Use of bone marrow aspirate (BMA) is a clinically advantageous cell therapeutic that bypasses the need for elaborate ex vivo cell culturing. However, a low level of bone marrow-mesenchymal stem cells (BM-MSCs) in the BMA and weak survival rate of these cells post-transplantation entails an insufficient efficacy in vivo. Moreover, stem cell activity in BMA is impaired by age or background diseases. Thus, in order to enrich the BM-MSC pool and improve cell survival, novel cell preconditioning technologies are required. In this study, it has been revealed that the pretreatment of repetitive electromagnetic stimulation (rEMS) is capable of enhancing fibroblastic colony-forming units and cell proliferation in the BM-MSCs, possibly via transient nitric oxide production and extracellular signal regulated kinase 1/2 activation. Notably, this effect was more apparent in stem cells isolated from older patients than from young patients. Furthermore, the rEMS-pretreated cells showed ~53% higher cell survival, compared with the untreated cells, after cell transplantation in mice with no signs of tumorigenesis. Collectively, transient rEMS preconditioning could be utilized to enhance the activity of stem cells and thus, application of rEMS preconditioning to stem cells isolated from older patients is expected to improve the therapeutic effect of stem cells.

Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study

  • Kai Dong;Wen-Juan Zhou;Zhong-Hao Liu
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.54-68
    • /
    • 2023
  • Purpose: The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. Methods: BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 µM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 µM, ROS scavenger) group, (4) the drBMSCs + MF (200 µM) group, and (5) the drBMSCs + MF (200 µM) + H2O2 (50 µM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. Results: MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. Conclusions: MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.

Characterization of the Immunologically Active Components of Glycyrrhiza uralensis Prepared as Herbal Kimchi

  • Hwang, Jong-Hyun;Lee, Kyong-Haeng;Yu, Kwang-Won
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.29-35
    • /
    • 2003
  • A crude polysaccharide fraction (GU-3) from the roots of Glycyrrhiza uralensis (licorice root), a screened herbal plant used in the preparation of herbal kimchi, enhanced Peyer's patch mediated bone marrow cell proliferation and NK cell-mediated tumor cytotoxicity against Yac-1 cells. GU-3 was further purified by DEAE-Sepharose CL-6B yielding fractions designated as GU-3I, and 3IIa∼3IIe. GU-3IIa is mainly composed of arabinose, galactose and galacturonic acid, and showed the highest bone marrow cell proliferation activity. In addition, GU-3IIb had arabinose, galactose, rhamnose and galacturonic acid as the component sugars with a small quantity of protein; GU-3IIb also enhanced activity of NK cell-mediated tumor cytotoxicity. After these fractions were further fractionated via gel filtration on Sepharose CL-6B or Sephacryl S-300, two immunological active polysaccharides, GU-3IIa-2 and 3IIb-1 were purified from the respective fractions. GU-3IIa-2 mostly contained neutral sugars (75%) such as arabinose and galactose (molar ratio; 1.0 : 0.7) in addition to a considerable amount of galacturonic acid (20%), whereas GU-3IIb-1 was composed of arabinose, galactose, rhamnose and galacturonic acid (molar ratio; 0.3 : 0.5 : 0.1 : 1.0). Methylation analysis indicated that GU-3IIa-2 was composed mainly of terminal, 4- or 5-linked and 3,4- or 3,5-branched arabinose, 3-linked, 4-linked and 3,6-branched galactose, and terminal and 4-linked galacturonic acid whereas GU-3IIb-1 contained various glycosidic linkages such as terminal and 4- or 5-linked arabinose, 2,4-branched rhamnose, terminal and 4-linked galactose, and terminal and 4-galacturonic arid. Single radial gel diffusion indicated that only GU-3IIa-2 strongly reacted with β-D-glucosyl-Yariv antigen. These results suggest that bone marrow cell proliferating activity and enhancement of NK cell-mediated tumor cytotoxicity of GU-3 are caused by polysaccharides containing a pectic arabinogalactan (GU-3IIa-2) and pectic polysaccharide (GU-3IIb-1).

The Effects of Hesperidin on the Proliferation and Activity of Bone Cells

  • Bae, Moon-Seo;Ko, Seon-Yle;Kim, Se-Won
    • International Journal of Oral Biology
    • /
    • 제31권4호
    • /
    • pp.119-125
    • /
    • 2006
  • The importance of phytoestrogens to human health is currently being actively investigated. Hesperidin, abundantly found in citrus fruits, is known to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, it has been reported that hesperidin inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. In our study, to determine the possible role of hesperidin in the regulation of bone metabolism, we observed the effects of hesperidin on the proliferation and activity of osteoblasts, as well as the effects of hesperidin on osteoclast generation and activity. We observed that, when treated with hesperidin, the number and viability of osteoblastic cells increased, alkaline phosphatase (ALP) activity of osteoblastic cells increased, and osteoprotegerin (OPG) secretion from MG63 cells decreased. Hesperidin treatment had no effect on the osteoclast generation and activity in the bone marrow cell culture, but decreased the number and resorptive activity of osteoclasts generated from RAW/264.7 cells. Taken together, these results indicate that hesperidin increases the proliferation and activity of osteoblasts, while inhibiting generation and activity of osteoclasts. Although the precise role of hesperidin remains to be elucidated, our study suggests that it is one of the important modulators of bone metabolism.

섬유성이형성증 유래세포의 특성연구 (CHARACTERISTICS OF FIBROUS DYSPLASIA DERIVED CELLS)

  • 이찬희;한인;서병무
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권5호
    • /
    • pp.304-309
    • /
    • 2009
  • Purpose: Fibrous dysplasia (FD) is a fibro-osseous disease associated with activating missense mutations of the gene encoding the $\alpha$-subunit of stimulatory G protein. FD may affect a single bone (called monostotic form) or multiple bones (called polyostotic form). The extent of lesions reflects the onset time of mutation. In this study, cells from monostotic FD in maxilla of a patient were isolated and cultured in vitro for characterization. Materials and Methods: The single cells were released from FD lesion which was surgical specimen from 15 years-old boy. These isolated cells were cultured in vitro and tested their proliferation activity with MTT assay. In osteogenic media, these cells underwent differentiation process comparing with its normal counterpart i.e. bone marrow stromal cells. The proliferated FD cells were detached and transplanted into the dordsal pocket of nude mouse and harvested in 6 weeks and 12 weeks. Results and Summary: FD cells have an increased proliferation rate and poor differentiation. As a result, cells isolated from FD lesion decreased differentiation into osteoblast and increased proliferation capacity. MTT assay presented that proliferation rate of FD cells were higher than control. However, the mineral induction capacity of FD was lesser than that of control. Monostotic FD cells make fewer amounts of bone ossicles and most of them are woven bone rather than lamellar bone in vivo transplantation. In transplanted FD cells, hematopoietic marrow were not seen in the marrow space and filled with the organized fibrous tissue. Therefore, they were recapitulated to the original histological features of FD lesion. Collectively, these results indicated that the FD cells were shown that the increased proliferation and decreased differentiation potential. These in vitro and in vivo system can be useful to test FD cell's fate and possible.

Characterization of Bone Marrow Cell Proliferating Arabinogalactan through Peyer`s Patch Cells from Rhizomes of Atractylodes lancea DC

  • Yu, Kwang-Won;Hwang, Jong-Hyun
    • Preventive Nutrition and Food Science
    • /
    • 제6권3호
    • /
    • pp.180-186
    • /
    • 2001
  • Bone marrow cell proliferating arabinogalactan-like polysaccharide (ALR-3IIa-1-1) has been purified from rhizomes of Atractylodes lancea DC. In order to characterize the essential structure of ALR-3IIa-1-1 for expression of the activity, sequential enzymatic digestion using ego-$\alpha$-L-arabinofurasidase (AFase) and ego-$\beta$-D-(1longrightarrow3)-galactanase (GNase) was employed. After ALR-3IIa-1-1 was digested with the AFase, the GNase digestion cleaved only 10% and 23% of 3-linked and 3,6-branched galactose, respectively, from arabinose-trimmed ALR-3IIa-1-1 (AT-ALR-3IIa-1-1), and gave small amounts of intermediate size (AT-G-2) and shorter oligosaccharides (AT-G-3) fractions in addition to a large amount of the GNase resistant fraction (AT-G-1). When AT-G-1 was redigested gradually with the AFase and GNase, it released trace amounts of oligosaccharides in addition to a large amount of the resistant fraction. When the final enzyme-resistant fraction from AT-G-1 was digested simultaneously with both AFase and GNase, the resistant fraction was significantly degraded into two long fragments (3AT-3G-1 and 2). The mixture of digestion products from the first GNase digestion of AT-ALR-3IIa-1-1 showed a significantly decreased bone marrow cell proliferation activity to about 30% of the activity of ALR-3IIa-1-1, but the GNase resistant fraction (AT-7-1) still had significant activity. Although the second gradual enzymatic digestion of AT-G-1 showed a marginal decrease in activity, the resulting fragments (3AT-3G-1 and 2) by the final simultaneous enzymatic digestion lost most of the activity. Component sugar, methylation and FAB-MS analyses indicated that the digestion products (AT-G-21 AT-G-31 2AT-2G-2 and 2AT-2G-3) released from AT-ALR-3IIa-1-1 by the sequential enzymatic digestion contained galactose-containing oligosaccharides mainly comprising 6-linked galactose, that some of which were partially arabinosylated, and these oligosaccharides were attached to $\beta$-D-(1longrightarrow3)-galactan backbone in its non-reducing terminal side as side chains.

  • PDF