• 제목/요약/키워드: bone marrow cell

검색결과 759건 처리시간 0.026초

쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구 (PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS)

  • 김인숙;조태형;장옥련;이규백;박용두;노인섭;;이종호;김명진;황순정
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.

성견 치계줄기세포 및 골수줄기세포 특성에 관한 연구 (Investigation of postnatal stem cells from canine dental tissue and bone marrow)

  • 진민주;김영성;김수환;김경화;이철우;구기태;김태일;설양조;구영;류인철;정종평;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the stemness of cells from canine dental tissues and bone marrow. Methods: Canine periodontal ligament stem cells (PDLSC), alveolar bone stem cells (ABSC) and bone marrow stem cells(BMSC) were isolated and cultured. Cell differentiations (osteogenic, adipogenic and chondrogenic) and surface antigens (CD146, STRO-1, CD44, CD90, CD45, CD34) were evaluated in vitro. The cells were transplanted into the subcutaneous space of nude mice to assess capacity for ectopic bone formation at 8 weeks after implantation. Results: PDLSC, ABSC and BMSC differentiated into osteoblasts, adipocytes and chondrocytes under defined condition. The cells expressed the mesenchymal stem cell markers differently. When transplanted into athymic nude mice, these three kinds of cells with hydroxyapatite /${\beta}$- tricalcium phosphate (HA/TCP) carrier showed ectopic bone formation. Conclusions: This study demonstrated that canine dental stem cells have stemness like bone marrow stem cells. Transplantation of these cells might be used as a therapeutic approach for dental stem cell-mediated periodontal tissue regeneration.

가토의 상악동 골이식술시 미분화 간엽 줄기세포의 골형성 효과 (THE EFFECTS OF UNDIFFERENTIATED MESENCHYMAL STEM CELLS ON SINUS BONE GRAFTING IN RABBIT)

  • 오승환;채영원;김범수;여인범;조필귀
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.520-530
    • /
    • 2006
  • Undifferentiated mesencymal stem cells(UMSCs) have been thought to be multipotent cells that can replicate as undifferentiated cells and that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. It can be used to sinus lifting, Guided bone regeneration, other bone graft in dental part. The purpose of this study is to evaluate the effect of mesencymal stem cells on sinus augmentation with autogenous bone, fibrin glue mixture in a rabbit model. 8 New Zealand white rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, undifferentiated mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, The animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, Stem cell group showed integrated graft bone with host bone from sinus wall. At 2 and 4weeks, It showed active newly formed bone and neovascularization. At 8 weeks, lamella bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than autobone without stemcell. there were significant differences in bone volume between 2 and 4 weeks (p<0.05). In summary, the autobone with stem cells had well-formed, newly formed bone and neovasculization, compared with the autobone without stem cells (esp. 2 weeks and 4 weeks) The findings of this experimental study indicate that the use of a mixture of mesenchymal stem cell yielded good results in osteogenesis and bone volume comparable with that achieved by autogenous bone. Therefore, this application of this promising new sinus floor elevation method for implants with tissue engineering technology deserves further study.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

3차원 Co-culture 시스템을 통한 BMSC의 NP-like Cell로의 분화 (The Differentiation of bone Marrow Stromal Cells into NP-like Cells through 3-Dimensional Co-culture System)

  • 김동화;김수향;허수진;신지원;김영직;박소희;전재우;신정욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.159-163
    • /
    • 2008
  • The goal of this study is to investigate the effect and potential of three-dimensional Co-culture of BMSCs (bone marrow stromal Cells) and NP (nucleus pulposus) Cells on the differentiation of BMSCs into NP-like Cells. The NP Cells and BMSCs were isolated and cultured from New Zealand White rabbits. The isolated NP Cells and BMSCs were prepared in different alginate beads. Those two types of beads were separated by a track-etched membrane of $3\;{\mu}m$ pore in a 6-well culture plate. No growth factors were used. In addition to these, NP and BMSC were cultured in the beads independently for control. The number of Cells in Co-culturing system was half of those in two control groups. Proliferation and production of glycosaminoglycan (GAG) were evaluated along with histological observation. The GAG production rate(GAG contents/Cell) of Co-cultured BMSCs were much higher than that of BMSCs cultured alone. The total amounts of GAG produced by BMSCs in Co-culturing system were larger than those produced by BMSCs in control group and were comparable with those produced by NP alone even the number of each Cell was half of BMSCs in Co-culturing system. This study showed the potential of differentiation of BMSCs into NP-like Cells through three-dimensional Co-culture system even without any chemical agents.

Bone Marrow-derived Side Population Cells are Capable of Functional Cardiomyogenic Differentiation

  • Yoon, Jihyun;Choi, Seung-Cheol;Park, Chi-Yeon;Choi, Ji-Hyun;Kim, Yang-In;Shim, Wan-Joo;Lim, Do-Sun
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.216-223
    • /
    • 2008
  • It has been reported that bone marrow (BM)-side population (SP) cells, with hematopoietic stem cell activity, can transdifferentiate into cardiomyocytes and contribute to myocardial repair. However, this has been questioned by recent studies showing that hematopoietic stem cells (HSCs) adopt a hematopoietic cell lineage in the ischemic myocardium. The present study was designed to investigate whether BM-SP cells can in fact transdifferentiate into functional cardiomyocytes. Phenotypically, BM-SP cells were $19.59%{\pm}9.00\;CD14^+$, $8.22%{\pm}2.72\;CD34^+$, $92.93%{\pm}2.68\;CD44^+$, $91.86%{\pm}4.07\;CD45^+$, $28.48%{\pm}2.24\;c-kit^+$, $71.09%{\pm}3.67\;Sca-1^+$. Expression of endothelial cell markers (CD31, Flk-1, Tie-2 and VEGF-A) was higher in BM-SP cells than whole BM cells. After five days of co-culture with neonatal cardiomyocytes, $7.2%{\pm}1.2$ of the BM-SP cells expressed sarcomeric ${\alpha}$-actinin as measured by flow cytometry. Moreover, BM-SP cells co-cultured on neonatal cardiomyocytes fixed to inhibit cell fusion also expressed sarcomeric ${\alpha}$-actinin. The co-cultured BM-SP cells showed neonatal cardiomyocyte-like action potentials of relatively long duration and shallow resting membrane potential. They also generated calcium transients with amplitude and duration similar to those of neonatal cardiomyocytes. These results show that BM-SP cells are capable of functional cardiomyogenic differentiation when co-cultured with neonatal cardiomyocytes.

마우스 동계골수이식 후 면역체계의 재생: I. 말초혈액 및 림프장기 세포의 숫적 변 화와 림프구아군의 분포 (Regeneration of Immune System after Syngeneic Bone Marrow Transplantation in Irradiated Mice: I. The Changes of Cell Number in Peripheral blood and Lymphatic Organs and Composition of Lymphocyte Subsets)

  • 김성호;오헌;이송은;김순태;조성기;현병화;류시윤
    • 한국수의병리학회지
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1997
  • The cellularity and composition of the spleen lymph node thymus and peripheral blood and tempo of regeneration were studied at various time points after syngeneic bone marrow transplantation(BMT) in C3H/Hen mice. Significant depression of absolute lymphocyte count was noted on week 1 after lethal whole-body irradiation and BMT. In comparison to the lymph node thymus and spleen had an rapid regeneration of cellularity. The distinct cell populations($CD4^+,\;CD8^+,\;CD28^+,\;B220^+) have determined in the lymphoid tissue of mice subjected to irradiation. The relative representation of these subpopulations was significantly different from that in nonirradiated control. $CD4^+\;and\;CD8^+$ cells were present in very low numbers whereas the $B220^+$ cells reached more than normal range at 2 weeks after BMT. The number of $CD4^+$ cells returned to normal relatively soon than $CD8^+$ cell. At week 4 after BMT, the cellularity and composition of spleen lymph node and peripheral blood lymphocyte reached about 50% of the normal range therefore we can choose this time point for the other tests of immune function after BMT.

  • PDF

골수기질세포와 진피섬유모세포의 이식이 교원질 합성에 미치는 영향 (Effect of Transplantation of Bone Marrow Stromal Cells and Dermal Fibroblasts on Collagen Synthesis)

  • 최원일;한승규;이병일;김우경
    • Archives of Plastic Surgery
    • /
    • 제34권2호
    • /
    • pp.156-162
    • /
    • 2007
  • Purpose: In the previous in vitro studies the bone marrow stromal cells(BSCs) have shown the superior effect for wound healing activity than fibroblasts, which includes cell proliferation, type I collagen synthesis, and the production of bFGF, VEGF and TGF-${\beta}$ in chronic wound healing. The aim of this study is to compare the effects of BSCs and fibroblasts on wound healing activity in vivo, especially on collagen synthesis. Methods: The fibroblasts and BSCs were harvested from patients and cultured. The cultured cells were infiltrated into the pores of polyethylene discs. These discs were divided into three groups according to the mixed cells. In groups I, II and III the discs were loaded with no cells, fibroblasts and BSCs, respectively. Twelve discs per group(total 36 discs) were made for this study. After creating 6 pockets in the back of each rats, each discs was implanted into each pockets. At three time intervals from 1 to 3 weeks, the implanted discs were harvested for the histological and quantitative analysis. The amount of collagen produced was evaluated using ELISA. Statistical comparisons were made using the Mann-Whitney U-test. Results: There was great difference in the collagen synthesis among the three groups by the 1st and 2nd weeks. The BSC group showed highest collagen level, followed by fibroblast group and no cell group(p<0.05). The 3rd week specimens also showed greater collagen amount in BSC and fibroblast groups compared to those of no cell group(p<0.05). However, there was little difference between BSC and fibroblast groups. Conclusion: This result demonstrates that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

Birth of a healthy infant after bone marrow-derived cell therapy

  • Patel, Nayana H;Jadeja, Yuvraj D;Patel, Niket H;Patel, Molina N;Bhadarka, Harsha K;Chudasama, Piyush N;Thakkar, Harmi R
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권3호
    • /
    • pp.268-272
    • /
    • 2021
  • Bone marrow-derived cell (BMDC) therapy has numerous applications as potential biological cells for use in regenerative medicine. Here, we present an original case of endometrial atrophy associated with genital tuberculosis in a woman who achieved a live birth with BMDC. This 27-year-old woman came to our center with endometrial atrophy and primary infertility. She had a past history of genital tuberculosis and amenorrhea. Her husband's semen quality was normal. The patient was counseled for hysteroscopy due to thin endometrium and advised in vitro fertilization (IVF) with donor eggs in lieu of poor ovarian reserve. Several attempts of IVF with hormone replacement therapy (HRT) were made, but the desired thickness of the endometrium was not achieved. Uterine artery injection of BMDC through interventional radiology was given, followed by HRT for three months, which resulted in improved endometrium. This was subsequently followed by IVF with donor egg. The treatment resulted in the conception and delivery of a 3.1-kg baby boy through lower segment caesarean section with no antenatal, intranatal or postnatal complications. Recently, there has been massive interest in stem cells as a novel treatment method for regenerative medicine, and more specifically for the regeneration of human endometrium disorders like Asherman syndrome and thin endometrium, which was the reason behind using this strategy for treatment.

Effects and Mechanisms of Bone Marrow Mesenchymal Stem Cell Transplantation for Treatment of Ischemic Stroke in Hypertensive Rats

  • Yulin Liu;Ying Zhao;Yu Min;Kaifeng Guo;Yuling Chen;Zhen Huang;Cheng Long
    • International Journal of Stem Cells
    • /
    • 제15권2호
    • /
    • pp.217-226
    • /
    • 2022
  • Background and Objectives: Stroke is the most common cause of human death and functional disability, resulting in more than 5 million deaths worldwide each year. Bone marrow mesenchymal stem cells (BMSCs) are a kind of stem cell that are able to self-renew and differentiate into many types of tissues. Therefore, BMSCs have the potential to replace damaged neurons and promote the reconstruction of nerve conduction pathways and connective tissue. However, it remains unknown whether transplanted BMSCs promote angiogenesis or improve the tissue microenvironment directly or indirectly through paracrine interactions. This study aimed to determine the therapeutic effect of BMSCs on ischemic stroke with hypertension in a rodent model and to explore the possible mechanisms underlying any benefits. Methods and Results: Middle cerebral artery occlusion was used to establish the experimental stroke model. The area of cerebral infarction, expression of vascular endothelial growth factor (VEGF) and glial cell line-derived neurotrophic factor (GDNF), and increment of astrocyte were measured by TTC staining, western blot, real-time quantitative polymerase chain reaction (RT-qPCR) and immunocytochemistry. The results showed a smaller area of cerebral infarction and improved neurological function scores in animals treated with BMSCs compared to controls. The results of RT-qPCR and western blot assays showed higher expression of VEGF and GDNF in BMSC-treated animals compared with controls. Our study also showed that one round of BMSCs transplantation significantly promoted the proliferation of subventricular zone and cortical cells, especially astrocytes, on the ischemic side following cerebral ischemia. Conclusions: Above findings support that BMSCs have therapeutic effects for ischemic stroke complicated with hypertension, which may occur via up-regulated expression of VEGF and GDNF and reduction of neuronal apoptosis, thereby promoting the recovery of nerve function.