Acknowledgement
Supported by : Ministry of Science and Technology
References
- Asakura, A., and Rudnicki, M.A. (2002). Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 30, 1339-1345 https://doi.org/10.1016/S0301-472X(02)00954-2
- Balsam, L.B., Wagers, A.J., Christensen, J.L., Kofidis, T., Weissman, I.L., and Robbins, R.C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668-673 https://doi.org/10.1038/nature02460
- Fraser, A.R., Cook, G., Franklin, I.M., Templeton, J.G., Campbell, M., Holyoake, T.L., and Campbell, J.D. (2006). Immature monocytes from G-CSF-mobilized peripheral blood stem cell collections carry surface-bound IL-10 and have the potential to modulate alloreactivity. J. Leukoc. Biol. 80, 862-869 https://doi.org/10.1189/jlb.0605297
- Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797-1806 https://doi.org/10.1084/jem.183.4.1797
- Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., De- Maria, M., Paradis, G., Grupp, S.A., Sieff, C.A., Mulligan, R.C., and Johnson, R.P. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337-1345 https://doi.org/10.1038/nm1297-1337
- Iijima, Y., Nagai, T., Mizukami, M., Matsuura, K., Ogura, T., Wada, H., Toko, H., Akazawa, H., Takano, H., Nakaya, H., et al. (2003). Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J. 17, 1361-1363 https://doi.org/10.1096/fj.02-1048fje
- Jackson, K.A., Majka, S.M., Wang, H., Pocius, J., Hartley, C.J., Majesky, M.W., Entman, M.L., Michael, L.H., Hirschi, K.K., and Goodell, M.A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395-1402 https://doi.org/10.1172/JCI12150
- Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska, D., Kasahara, H., Zias, E., Bonafe, M., et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 96, 127-137 https://doi.org/10.1161/01.RES.0000151843.79801.60
- Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., Ratajczak, J., Rezzoug, F., Ildstad, S.T., Bolli, R., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ. Res. 95, 1191-1199 https://doi.org/10.1161/01.RES.0000150856.47324.5b
- Kucia, M., Reca, R., Jala, V.R., Dawn, B., Ratajczak, J., and Ratajczak, M.Z. (2005). Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19, 1118-1127 https://doi.org/10.1038/sj.leu.2403796
- Labarge, M.A., and Blau, H.M. (2002). Biological progression from adult bone marrow to mononucleate stem cells to multinucleate muscle fiber in response to injury. Cell 111, 589-601 https://doi.org/10.1016/S0092-8674(02)01078-4
-
Lagostena, L., Avitabile, D., De Falco, E., Orlandi, A., Grassi, F., Iachininoto, M.G., Ragone, G., Fucile, S., Pompilio, G., Eusebi, F., et al. (2005). Electrophysiological properties of mouse bone marrow c-
$kit^+$ cells co-cultured onto neonatal cardiac myocytes. Cardiovasc. Res. 66, 482-492 https://doi.org/10.1016/j.cardiores.2005.01.018 - Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647-653 https://doi.org/10.1038/nature03215
- Lee, V.M., and Stoffel, M. (2003). Bone marrow: an extrapancreatic hideout for the elusive pancreatic stem cells? J. Clin. Invest. 111, 799-801 https://doi.org/10.1172/JCI17063
- Montanaro, F., Liadaki, K., Schienda, J., Flint, A., Gussoni, E., and Kunkel, L.M. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp. Cell Res. 298, 144-154 https://doi.org/10.1016/j.yexcr.2004.04.010
- Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.H., Poppa, V., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-668 https://doi.org/10.1038/nature02446
- Naylor, C.S., Jaworska, E., Branson, K., Embleton, M.J., and Chopra, R. (2005). Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant. 35, 353-360 https://doi.org/10.1038/sj.bmt.1704762
- Nygren, J.M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B.K., and Jacobsen, S.E. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494-501 https://doi.org/10.1038/nm1040
- Ojima, K., Uezumi, A., Miyoshi, H., Masuda, S., Morita, Y., Fukase, A., Hattori, A., Nakauchi, H., Miyagoe-Suzuki, Y., and Takeda, S. (2004). Mac-1(low) early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration. Biochem. Biophys. Res. Commun. 321, 1050-1061 https://doi.org/10.1016/j.bbrc.2004.07.069
- Parmar, K., Sauk-Schubert, C., Burdick, D., Handley, M., and Mauch, P. (2003). Sca+CD34- murine side population cells are highly enriched for primitive stem cells. Exp. Hematol. 31, 244-250 https://doi.org/10.1016/S0301-472X(02)01074-3
- Petersen, B.E., Bowen, W.C., Patrene, K.D., Mars, W.M., Sullivan, A.K., Murase, N., Boggs, S.S., Greenberger, J.S., and Goff, J.P. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170 https://doi.org/10.1126/science.284.5417.1168
-
Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., Colucci, W.S., and Liao, R. (2005).
$CD31^-$ but Not$CD31^+$ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res. 97, 52-61 https://doi.org/10.1161/01.RES.0000173297.53793.fa - Sales-Pardo, I., Avendano, A., Martinez-Munoz, V., Garcia-Escarp, M., Celis, R., Whittle, P., Barquinero, J., Domingo, J.C., Marin, P., and Petriz, J. (2006). Flow cytometry of the side population: tips & tricks. Cell Oncol. 28, 37-53
- Sanchez-Ramos, J.R. (2002). Neural cells derived from adult bone marrow and umbilical cord blood. J. Neurosci. Res. 69, 880-893 https://doi.org/10.1002/jnr.10337
- Storms, R.W., Goodell, M.A., Fisher, A., Mulligan, R.C., and Smith, C. (2000). Hoechst dye efflux reveals a novel CD7(+)CD34(-) lymphoid progenitor in human umbilical cord blood. Blood 96, 2125-2133
- Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D.M., Nakano, Y., Meyer, E.M., Morel, L., Petersen, B.E., and Scott, E.W. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542-545 https://doi.org/10.1038/nature730
- Watt, F.M., and Hogan, B.L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427-1430 https://doi.org/10.1126/science.287.5457.1427
-
Wojakowski, W., Tendera, M., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., Wyderka, R., Ochala, A., and Ratajczak, M.Z. (2004). Mobilization of CD34/
$CXCR4^+$ , CD34/$CD117^+$ , c-$met^+$ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110, 3213-3220 https://doi.org/10.1161/01.CIR.0000147609.39780.02 - Wurmser, A.E., Nakashima, K., Summers, R.G., Toni, N., D'Amour, K.A., Lie, D.C., and Gage, F.H. (2004). Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350-356 https://doi.org/10.1038/nature02604
-
Yao, A., Su, Z., Nonaka, A., Zubair, I., Spitzer, K.W., Bridge, J.H., Muelheims, G., Ross, J.Jr., and Barry, W.H. (1998). Abnormal myocyte
$Ca^2+$ homeostasis in rabbits with pacing induced heart failure. Am. J. Physiol. 275, H1441-H1448 - Yoon, J., Shim, W.J., Ro, Y.M., and Lim, D.S. (2005). Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann. Hematol. 84, 715-721 https://doi.org/10.1007/s00277-005-1068-7