• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.025 seconds

INTERFACIAL MORPHOLOGY BETWEEN DENTIN AND ADHESIVES ACCORDING TO TREATMENT OF DENTIN SURFACE OF CERVICAL ABRASION LESION (치경부 마모병소의 상아질 표면처리 방식에 따른 상아질과 접착제 간의 계면 양상)

  • Lee, Yong-Hee;Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • In order to know the effect of dentin bonding agents on the restoration of cervical abrasion, Scotchbond Multipurpose Single Bond and Clearfil Liner Bond 2 were used in 51 teeth with abrasion lesion and normal teeth. The surface structure and dentinal tubules of acid etched dentin and resin replica were examined using scanning electron microscopy. The interfacial morphology between dentin and adhesives was investigated by confocal laser scanning microscopy. Following results were obtained. 1. The hybrid layer and resin tag of the dentin showing cross-sectional surface of dentinal tubules are thicker and longer than those of dentin showing oblique surface of dentinal tubules. 2. The sclerotic cast was frequently observed in dentinal tubule, and the cast looked like cuboidal or rhomboidal-shaped crystals clumped from outer side to inner side. 3. The formation of hybrid layer and resin tag was the most prominent in Scotchbond Multipurpose group, whereas Clearfil Liner Bond 2 group showed very poor formation. The formation of hybrid layer and resin tag in Single Bond group was less than Scotchbond Multipurpose group.

  • PDF

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • Soh, D.;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Sintering and Consolidation of Silver Nanoparticles Printed on Polyimide Substrate Films

  • Yoon, Sang-Hwa;Lee, Jun-Ho;Lee, Pyoung-Chan;Nam, Jae-Do;Jung, Hyun-Chul;Oh, Yong-Soo;Kim, Tae-Sung;Lee, Young-Kwan
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.568-574
    • /
    • 2009
  • We investigated the sintering and consolidation phenomena of silver nanoparticles under various thermal treatment conditions when they were patterned by a contact printing technique on polyimide substrate films. The sintering of metastable silver nanoparticles commenced at 180 $^{\circ}C$, where the point necks were formed at the contact points of the nanoparticles to reduce the overall surface area and the overall surface energy. As the temperature was increased up to 250 $^{\circ}C$, silver atoms diffused from the grain boundaries at the intersections and continued to deposit on the interior surface of the pores, thereby filling up the remaining space. When the consolidation temperature exceeded 270 $^{\circ}C$, the capillary force between the spherical silver particles and polyimide flat surface induced the permanent deformation of the polyimide films, leaving crater-shaped indentation marks. The bonding force between the patterned silver metal and polyimide substrate was greatly increased by the heat treatment temperature and the mechanical interlocking by the metal particle indentation.

Dip Coating of Amorphous Materials on Metal Surface (금속표면에 비정질의 피복)

  • Park, Byung-Ok;Yoon, Byung-Ha
    • Journal of Surface Science and Engineering
    • /
    • v.20 no.2
    • /
    • pp.49-59
    • /
    • 1987
  • The properties of $Cr_2O_3-Al_2O_3-SiO_2$ composite oxide coatings on steel surface were investigated. The results obtained were as follows: The microhardness of oxide coating layer increased with increasing heat-treatment temperature and $Cr_2O_3$ content in coating layer. The hardness showed the highest value (850Hv) treated at 700$^{\circ}C$ for $SiO_2:Al_2O_3:Cr_2O_3$=1:1:4. Increasing heat-treatment temperature, corrosion current density became lower and coating layer became denser. The corrosion current density showed the lowest value $(6.5{\times}10^{-5}\;Acm^2)$ treated at 750$^{\circ}C\;for\;SiO_2:Al_2O_3:Cr_2O_3$=1:1:3. These results were explained by protective layer which was formed during heat-treatment. The bonding between matrix and coating layer is expected to be made mechanically and chemically by the inter diffusion of Ni and Fe. The composite oxide coating was formed by softening of the binder with increasing heat-treatment temperature. The strengthening of coating layer is to be resulted from the dispersion of major oxide particles.

  • PDF

Development of Real-Time COF Film Complex Inspection System using Color Image (컬러영상을 이용한 실시간 COF 필름 복합 검사시스템 개발)

  • Kim, Yong-Kwan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.112-118
    • /
    • 2021
  • In this study, an inspection method using a color image is proposed to conduct a real-time inspection of covalent organic framework (COF) films to detect defects, if any. The COF film consists of an upper pattern SR and a lower PI. The proposed system detects the defects of more than 20 ㎛ on the SR surface owing to the characteristics of the pattern, whereas on the PI surface, it detects defects of more than 4 ㎛ by utilizing a micro-optical system. In the existing system, it is difficult for the operator to conduct a full inspection through a high-performance microscope. The proposed inspection algorithm performs the inspection by separating each color component using the color contrast of the pattern on the SR side, and on the PI surface it inspects the bonding state of the mounted chip. As a result, it is possible to confirm the exact location of the defects through the SR and PI surface inspections in the implemented inspection.

The Material Analysis and Conservation of Porcelain Enamel - Focus of Porcelain Enamel Excavated at Former President Yoon Bosun's Birthplace -

  • Lee, Jung-Min
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • During the conservation and maintenance of the birthplace center yard of President Asan Yoon Bosun, four porcelain enamel dishware were excavated from the central yard well. The glaze layer of excavated enamel was severely damaged; hence, the conservation process was done rapidly. In addition, scientific investigation and analysis were conducted to confirm the material properties of the glaze layer. It was confirmed that the outer surface was inverted and dried, while the inner surface was upright and fired during the glazing and drying process by measuring the film thickness. By examining the breakup phenomenon, the breaking up of the white enamel on the colored enamel was confirmed. This indicates that the colored glaze rose to the surface depending on the density of the colored glaze and white glaze. The investigation of the cross-section of the film confirmed that the lower layer formed according to the bonding properties with metal during the glazing process. Analysis of the constituents of the identified lower layer confirmed that there are differences between the specific components of the metal oxide of the lower layer and the surface color development of the upper layer.

Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy (플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과)

  • Jaeeun Go;Jong Kook Lee;Han Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 2023
  • Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.

2D-Covalent organic frameworks for bioimaging and therapeutic applications

  • Chanho Park;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Covalent organic frameworks (COFs) are porous crystalline polymers in which organic units are linked by covalent bonds and have a regular arrangement at the atomic level. Recently, the COFs have been much attention in bio-medical area such as bio-imaging, drug delivery, and therapeutics. These 2D nanoparticles are proving their value in nanomedicine due to their large surface area, functionalization through functional groups exposed on the surface, chemical stability due to covalent bonding, and high biocompatibility. The high ω-electron density and crystallinity of COFs makes it a promising candidate for bioimaging probes, and its porosity and large surface area make it possible to be utilized as a drug delivery vehicle. However, the low dispersibility in water, the cytotoxicity problems of COFs are still challenged to be solved in the future. In this regard, several efforts that increase the degree of dispersion through functionalization on the surface of COFs for the application to the biomedical field have been reported. In this review, we would like to describe the advantages and limitations of COFs for bio-imaging and anti-cancer treatment.

Deposition of aluminum nitride nanopowders and fabrication of superhydrophobic surfaces (질화알루미늄 나노분말의 부착과 이를 활용한 초소수성 표면 제작)

  • Kwangseok Lee;Heon-Ju Choi;Handong Cho
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Superhydrophobic surfaces have been expected to be able to provide considerable performance improvements and introduce innovative functions across diverse industries. However, representative methods for fabricating superhydrophobic surfaces include etching the substrate or attaching nanosized particles, but they have been limited by problems such as applicability to only a few materials or low adhesion between particles and substrates, resulting in a short lifetime of superhydrophobic properties. In this work, we report a novel coating technique that can achieve superhydrophobicity by electrophoretic deposition of aluminum nitride (AlN) nanopowders and their self-bonding to form a surface structure without the use of binder resins through a hydrolysis reaction. Furthermore, by using a water-soluble adhesive as a temporary shield for the electrophoretic deposited AlN powders, hierarchical aluminum hydroxide structures can be strongly adhered to a variety of electrically conductive substrates. This binder-free technique for creating hierarchical structures that exhibit strong adhesion to a variety of substrates significantly expands the practical applicability of superhydrophobic surfaces.

Development of Glue for Artifact Conservation Using Papermaking Starch (Part 1) - The Nature and Adhesive Strength of Glues - (제지용 전분을 이용한 문화재 보존용 기능성 풀 개발 (제1보) - 풀의 종류에 따른 접착 특성 -)

  • Yi, Sun-Jo;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.44-53
    • /
    • 2014
  • This research were aimed at developing starches which have high preservability and high bonding strength from corn starch, modified cationic and oxidized corn starches, as compared to the fermented wheat starch. On the lining that attaching the base paper on the back of the work with paste, the coating weight was determined by the solid contents of the paste rather than the viscosity of paste. Adhesive strength and stiffness were also determined by the solid contents of the paste. Corn starch had lower solid contents, higher viscosity, and higher adhesive strength than other starches. In the iodine stain to the surface of peeled base paper off, paste deeply penetrated into the traditional Hanji than modern Hanji. And oxidized starch paste deeply penetrated into the paper layer than the cationic starch.