• Title/Summary/Keyword: blasting rock

Search Result 439, Processing Time 0.024 seconds

Evaluating Blasting Induced Damages of Granite (발파에 의한 화강암반의 손상평가)

  • 목영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.85-92
    • /
    • 1999
  • Blasting induced damage boundary was determined by measuring vibrations adjacent to charging holes. the criterion adopted to define damages is that blasting-induced strains exceeding tension-crack strain level cause damages. The blasting vibrations were measured in terms of acceleration and converted to strains. The tension-crack strain level was determined with tensile strengths and elastic moduli of rock cores. The damage zone was found to be extended radially about 1 meter from the blasthole detonated with 250 to 700 grams of explosives. The comparison of shear wave velocity profiles before and after blasting shows that the damage boundary of 1 meter seems to be reliable.

  • PDF

Numerical Analysis on Controlled Tunnel Blasting by Heck Charge (다단 장약에 의한 터널 진동제어 발파의 수치해석)

  • 양형식;두준기;조상호;김원범
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2003
  • Controlled tunnel blasting by deck charge was suggested and simulated by PFC and FEM analyses. Analyzed results showed that suggested method is efficient in fragmentation and able to decrease in vibration level because of decreased amount of charge per delay and dispersion of deck charge. This phenomena was explained by failure mechanism and proved that it can be successfully applied to tunnel blasting.

Detonating Cord as a Controllable Source for Scaled Model Blasting Test (축소모형실험 폭원으로서 도폭선의 폭력조절)

  • Yang, Hyung-Sik;Kim, Jong-Gwan;Choi, Mi-Jin;Choi, Byung-Hee;Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.295-300
    • /
    • 2007
  • A method using detonating cord was suggested to control the blasting source for scaled model test. Blasting of 5 concrete block was carried out to verify the method. It was proved that blasting power can be controlled by suggested method. It seemed to be reasonable to use the reduction ratio based on the explosion heat.

Analysis of Ground Vibration due to Demolition (구조물 발파해체로 인한 지반진동의 해석 연구)

  • Kim, Seung-Kon;Park, Hoon;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.210-219
    • /
    • 2002
  • In the ground vibration due to demolition blasting vibration and impact vibration of collapsed structure are separated. In this paper, model structures were collapsed by blasting with different charge locations. Ground vibrations were measured and separated as blasting and impact vibrations by waveform and dominant frequency. Vibration characteristics of different charge locations were examined.

Case Study of Blasting Pattern Design for Tunnelling in Which Considered Blast Induced Vibration Affected Across Buildings (터널 굴착 시 주변 구조물에 미치는 영향을 고려한 발파 설계 사례)

  • Baek, Seung-Kyu;Choo, Seok-Yeon;Yoon, Jong-O;Baek, Un-Il;Park, Hyung-Seop
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.377-386
    • /
    • 2006
  • In generally blasting pattern design is carried out in-situ borehole blasting test and its analysis. We added the 3D numerical analysis for blast induced vibrations. This paper is case study of 3D numerical analysis in which considered blast induced vibration affected across buildings, and then we design the blasting pattern of tunnel excavation.

A study on characteristics of blast vibration waveform by vibration time history analysis (진동이력분석을 응용한 발파 진동파형의 특성에 관한 연구)

  • 김진수;임한욱
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.36-47
    • /
    • 1999
  • For cautious controlled blasting, it is necessary to understand characteristics of the blasting vibration. In this study, a series of tests were carried out to investigate the several characteristics of blasting vibration waveform by vibration time history analysis. Separation between impulse vibration and free vibration from blasting vibration, duration time, effects of overlap of free vibration upon the level of vibration and changes of waveform according to increase of charge weight per delay etc. were studied with waveform analysis.

  • PDF

Numerical Modeling of the Detonation of Explosives Using Hydrodynamics Codes (유체 동역학 코드를 이용한 화약의 폭발과정에 대한 수치 모델링)

  • Park, Dohyun;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • The hydrodynamics code is a numerical tool developed for modeling high velocity impacts where the materials are assumed to behave like fluids. The hydrodynamics code is widely used for solving impact problems, such as rock blasting using explosives. For a realistic simulation of rock blasting, it is necessary to model explosives numerically so that the interaction problem between rock and explosives can be solved in a fully coupled manner. The equation of state of explosives, which describes the state of the material under given physical conditions, should be established. In this paper, we introduced the hydrodynamics code used for explosion process modeling, the equation of state of explosives, and the determination of associated parameters.

A Study on the Determination of Suitable Specific Charge in Tunnel Blasting Design (터널발파설계에서 적정장약량산정에 관한 연구)

  • Jeong, Dong-Ho;Kim, Seon-Hong;Bae, Hyo-Jin;Seok, Jin-Ho;Choo, Yong-Beom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Till now a lot of studies has been performed to increase the efficiency of tunnel blasting. Nevertheless there are still uncertainties of input parameter to determine the specific charge. In order to solve this problem, the rock types and the charges of 17 road tunnel sites were analyzed. As a result of these analyses an empirical formula depending on rock type and charge was developed. Through this formula rational tunnel blasting will be designed by quantitative method rather than by assumption.

  • PDF

Numerical Study on the Crack-propagation Controlling in Blasting Using Notched Charge Hole (노치 장약공을 이용한 발파균열제어에 관한 수치해석적 연구)

  • Cho, Sang-Ho;Park, Seung-Hwan;Kim, Kwang-Yeom;Nakamura, Yuichi;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • Mechanical excavation techniques employing tunnel boring machines (TBM) and rock splitters have been proposed to minimize rock damage for tunnel and underground waste repository facilities. Such a mechanical excavation, however, is extremely expensive and not applicable in all cases. For these reasons, controlled blasting using notched charge holes have been suggested to achieve crack growth along specific directions and inhibit growth along other directions. This study introduces a dynamic fracture process analysis code to simulate fracture processes of rock which has a notched charge hole.