Numerical Modeling of the Detonation of Explosives Using Hydrodynamics Codes

유체 동역학 코드를 이용한 화약의 폭발과정에 대한 수치 모델링

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부)
  • Received : 2016.05.03
  • Accepted : 2016.05.24
  • Published : 2016.06.30

Abstract

The hydrodynamics code is a numerical tool developed for modeling high velocity impacts where the materials are assumed to behave like fluids. The hydrodynamics code is widely used for solving impact problems, such as rock blasting using explosives. For a realistic simulation of rock blasting, it is necessary to model explosives numerically so that the interaction problem between rock and explosives can be solved in a fully coupled manner. The equation of state of explosives, which describes the state of the material under given physical conditions, should be established. In this paper, we introduced the hydrodynamics code used for explosion process modeling, the equation of state of explosives, and the determination of associated parameters.

유체 동역학 코드는 고속 충돌을 모델링하는 수치해석 툴로서 재료가 유체처럼 거동한다고 가정하며, 화약을 이용한 암반발파와 같은 충돌 문제를 푸는 데 광범위하게 사용된다. 암반발파를 현실적으로 모사하기 위해서는 화약을 수치해석적으로 모델링할 필요가 있으며, 이를 통해 암반과 화약의 상호작용 문제를 완전 연계된 방식으로 풀 수 있다. 화약을 수치 모델링하기 위해서는 특정 물리적 조건에서 재료의 상태를 나타내는 상태 방정식이 수립되어야 한다. 본 고에서는 발파 과정을 수치 모델링하기 위한 유체 동역학 코드, 화약의 상태 방정식과 관련 매개변수의 결정방법에 대해 소개하였다.

Keywords

References

  1. Alia, A. and M. Souli, 2006, High explosive simulation using multi-material formulations, Applied Thermal Engineering, Vol. 26, No. 10, pp. 1032-1042. https://doi.org/10.1016/j.applthermaleng.2005.10.018
  2. Bjork, R.L., 1958, Effects of a meteoroid impact on steel and aluminum in space, The Rand Corporation Report, P-1662.
  3. Donahue, L. and R.C. Ripley, 2005, Simulation of cylinder expansion tests using an Eulerian multiple-material approach, Proceedings of the 22nd International Symposium on Ballistics, CD-ROM.
  4. Evans, M.W. and F.H. Harlow, 1957, The particle-in-cell method for hydrodynamic calculations, Los Alamos Scientific Laboratory Report, LA-2139.
  5. Gingold, R.A. and J.J. Monaghan, 1977, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, Vol. 181, pp. 375-389. https://doi.org/10.1093/mnras/181.3.375
  6. Hamashima, H., Y. Kato and S. Itoh, 2004, Determination of JWL parameters for non-ideal explosive, Proceedings of the 13th American Physical Society Topical Conference on Shock Compression of Condensed Matter (The American Institute of Physics Conference Proceedings 706), pp. 331-334.
  7. Harlow, F.H., 1955, A machine calculation method for hydrodynamic problems, Los Alamos Scientific Laboratory Report, LAMS-1956.
  8. Hornberg, H. and F. Volk, 1989, The cylinder test in the context of physical detonation measurement methods, Propellants, Explosives, Pyrotechnics, Vol. 14, No. 5, pp. 199-211. https://doi.org/10.1002/prep.19890140506
  9. Itoh, S., H. Hamashima, K. Murata and Y. Kato, 2002, Determination of JWL parameters from underwater explosion test, Proceedings of the 12th International Detonation Symposium, CD-ROM.
  10. Lan, I.F., Hung, S.C., Chen, C.Y., Niu, Y.M., Shiuan, J.H., 1993, An improved simple method of deducing JWL parameters from cylinder expansion test, Propellants, Explosives, Pyrotechnics, Vol. 18, No. 1, pp. 18-24. https://doi.org/10.1002/prep.19930180104
  11. Lucy, L.B., 1977, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, Vol. 82, No. 12, pp. 1013-1024. https://doi.org/10.1086/112164
  12. Merchant, P.W., S.J. White and A.M. Collyer, 2002, A WBL-consistent JWL equation of state for the HMX-based explosive EDC37 from cylinder tests, Proceedings of the 12th International Detonation Symposium, CD-ROM.
  13. Park, D., 2009, Reduction of blast-induced vibration in tunnelling using barrier holes and air-deck, Ph.D. thesis, Seoul National University, Korea.
  14. Zukas, J.A., 2004, Introduction to hydrocodes, Amsterdam, Elsevier.