• Title/Summary/Keyword: bit error rate analysis

Search Result 337, Processing Time 0.019 seconds

UEP Effect Analysis of LDPC Codes for High-Quality Communication Systems (고품질 통신 시스템을 위한 LDPC 부호의 UEP 성능 분석)

  • Yu, Seog Kun;Joo, Eon Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.471-478
    • /
    • 2013
  • Powerful error control and increase in the number of bits per symbol should be provided for future high-quality communication systems. Each message bit may have different importance in multimedia data. Hence, UEP(unequal error protection) may be more efficient than EEP(equal error protection) in such cases. And the LDPC(low-density parity-check) code shows near Shannon limit error correcting performance. Therefore, the effect of UEP with LDPC codes is analyzed for high-quality message data in this paper. The relationship among MSE(mean square error), BER(bit error rate) and the number of bits per symbol is analyzed theoretically. Then, total message bits in a symbol are classified into two groups according to importance to prove the relationship by simulation. And the UEP performance is obtained by simulation according to the number of message bits in each group with the constraint of a fixed total code rate and codeword length. As results, the effect of UEP with the LDPC codes is analyzed by MSE according to the number of bits per symbol, the ratio of the message bits, and protection level of the classified groups.

Built-In-Test Coverage Analysis Considering Failure Mode of Electronics Components (전자부품 고장모드를 고려한 Built-In-Test 성능분석)

  • Seo, Joon-Ho;Ko, Jin-Young;Park, Han-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.449-455
    • /
    • 2015
  • Built-In-Test(hereafter: BIT) is necessary functionality for aircraft flight safety and it requires a high failure detection capacity of more than 95 % in the case of avionics equipment. The BIT coverage analysis is needed to make sure that BIT meets its fault diagnosis capability. FMECA is used a lot of for the BIT coverage analysis. However, in this paper, the BIT coverage analysis based on electronic components is introduced to minimize the analytical error. Further, by applying the failure mode of the electronic components and excluding electronic components that do not affect flight safety, the BIT coverage analysis can be more accurate. Finally, BIT demo was performed and it was confirmed that the performance of the actual BIT matches the analysis of BIT performance.

Data Randomization Scheme for Endurance Enhancement and Interference Mitigation of Multilevel Flash Memory Devices

  • Cha, Jaewon;Kang, Sungho
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.166-169
    • /
    • 2013
  • In this letter, we propose a data randomization scheme for endurance and interference mitigation of deeply-scaled multilevel flash memory. We address the relationships between data patterns and the raw bit error rate. An on-chip pseudorandom generator composed of an address-based seed location decoder is developed and evaluated with respect to uniformity. Experiments performed with 2x-nm and 4x-nm NAND flash memory devices illustrate the effectiveness of our scheme. The results show that the error rate is reduced up to 86% compared to that of a conventional cycling scheme. Accordingly, the endurance phenomenon can be mitigated through analysis of interference that causes tech shrinkage.

BER Performance Analysis of Hierarchical-MPSK Using Phase Parameters (위상 파라미터 도출을 통한 H-MPSK의 BER 성능 분석)

  • Lee, Won-Joon;Park, Sang-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.375-380
    • /
    • 2009
  • Bit error rate(BER) performance of each bit for hierarchical M-ary phase shift keying(H-MPSK) modulation scheme is changed according to the phase parameters. Thus, a method to find the phase parameters appropriate to the requests of the system is needed. In this paper, we propose a method to obtain the phase parameters from an approximate approach of BER for H-MPSK and verify a validity of the proposed method through the previously provided expression for analyzing an exact error probability of H-MPSK.

Exact Bit Error Rate Analysis of Partial Relay Selection in Dual-Hop Decode-and-Forward Relaying Systems over Rayleigh Fading Channels (레일레이 페이딩 채널을 고려한 듀얼 홉 디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법의 정확한 비트 오차율 분석)

  • Lee, Sangjun;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The conventional best relay selection based on all the channel information for the first and second hops in dual-hop systems has a large consumption of resources for channel feedback. In this paper, we analyze the average bit error rate for partial relay selection based on the channel information only for the first hop in dual-hop decode-and-forward relaying systems, where we assume independent Rayleigh fading channels. In particular, we provide an exact and closed-form expression for the average bit error rate of M-ary QAM. Also, through numerical investigation, the performance of the partial relay selection is compared with the performance of the best relay selection, and the performance is evaluated for different numbers of relays and various average channel power ratios for the first and second hops.

Performance Analysis of Low Bit-Rate Image Transmission over Concatenated Code WLL system (연쇄 부호화된 WLL 시스템을 통한 저비트율 영상전송 성능분석)

  • 이병길;조현욱;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1616-1623
    • /
    • 1999
  • This paper describes error resilient coding scheme is added in WLL system and its application for robust low-bit rate still image transmission over power controlled W-CDA system Rayleigh fading channels. The baseline JPEG compressing methods are uses in image coding over wireless channel. The channel uses Reed-Solomon(RS) outer codes concatenated with convolutional inner codes, and truncated type I hybrid ARQ protocol based on the selective repeat strategy and the RS error detection capability. Simulation results are proved for the statistics of the frame-error bursts of the proposed system in comparison with conventional WLL system. it gains the 2 dB of the Eb/No in same BER.

  • PDF

Exact BER Analysis of Physical Layer Network Coding for Two-Way Relay Channels (물리 계층 네트워크 코딩을 이용한 양방향 중계 채널에서의 정확한 BER 분석)

  • Park, Moon-Seo;Choi, Il-Hwan;Ahn, Min-Ki;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.317-324
    • /
    • 2012
  • Physical layer network coding (PNC) was first introduce by Zhang et al. for two-way relay channels (TWRCs). By utilizing the PNC, we can complete two-way communications within two time slots, instead of three time slots required in non-PNC systems. Recently, the upper and lower bounds for a bit error rate (BER) of PNC have been analyzed for fading channels. In this paper, we derive an exact BER of the PNC for the TWRC over fading channels. We determine decision regions based on the nearest neighbor rule and partition them into several wedge areas to apply the Craig's polar coordinate form for computing the BER. We confirm that our derived analysis accurately matches with the simulation results.

Performance Analysis of Coded FSK System for Multi-hop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크를 위한 부호화된 FSK 시스템의 성능 해석)

  • Oh, Kyu-Tae;Roh, Jae-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.408-414
    • /
    • 2007
  • Research advances in the areas of micro-sensor device and wireless network technology, has made it possible to develop energy efficient and low cost wireless sensor nodes. In this paper, the forward error control (FEC) scheme for lower power consumption and excellent BER(Bit Error Rate) performance during transmission propose in multi-hop wireless sensor network based on FSK modem. The FEC technique uses extra processing power related to encoding and decoding, it is need complex functions to be built into the sensor node. The probability of receiving a correct bit and codeword for relaying a frame over h nodes to the sink node is calculated as a function of channel parameter, number of hops, number of bits transmitted and the distance between the different nodes.

  • PDF

Analysis of Mobile System using Adaptive Modulation Method by Channel Forecast (채널예측에 의한 적응변조방식을 이용한 모바일 시스템 분석)

  • Lee, Myung-Soo;Cho, Dae-Jea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.895-900
    • /
    • 2011
  • To improve drawback of existing modulation method, in this paper, we propose the channel forecast method using adaptive modulation which can improve throughput of channel. This method adaptively changes modulation method to the change of channel environments. In proposed method, channel's characteristics are measured in realtime to determine code rate to the changes of demanded channel's bit error rate. If bit error rate is increased, this method reduce code rate to maintain maximum throughput. We analysis performance of proposed method by Matlab.

Optimum Nonseparable Filter Bank Design in Multidimensional M-Band Subband Structure

  • Park, Kyu-Sik;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.24-32
    • /
    • 1996
  • A rigorous theory for modeling, analysis, optimum nonseparable filter bank in multidimensional M-band quantized subband codec are developed in this paper. Each pdf-optimized quantizer is modeled by a nonlinear gain-plus-additive uncorrelated noise and embedded into the subband structure. We then decompose the analysis/synthesis filter banks into their polyphase components and shift the down-and up-samplers to the right and left of the analysis/synthesis polyphase matrices respectively. Focusing on the slow clock rate signal between the samplers, we derive the exact expression for the output mean square quantization error by using spatial-invariant analysis. We show that this error can be represented by two uncorrelated components : a distortion component due to the quantizer gain, and a random noise component due to fictitious uncorrelated noise at the uantizer. This mean square error is then minimized subject to perfect reconstruction (PR) constraints and the total bit allocation for the entire filter bank. The algorithm gives filter coefficients and subband bit allocations. Numerical design example for the optimum nonseparable orthonormal filter bank is given with a quincunx subsampling lattice.

  • PDF