• Title/Summary/Keyword: bioreactor culture

Search Result 302, Processing Time 0.027 seconds

Applications of Yeast Flocculation in Biotechnological Processes

  • Domingues, Lucilia;Vicente, Antonio A.;Lima, Nelson;Teixeira, Jose A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.288-305
    • /
    • 2000
  • A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects-the basics of yeast flocculation, the development of "new" flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous $\beta$-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculating bioreactors and discussing potential new uses of these systems.e systems.

  • PDF

Biodegradation of Evercion Blue P-GR and Ostazin Black H-GRN in synthetic textile wastewater by membrane bioreactor system using Trametes versicolor

  • Gul, Ulkuye D.;Acikgoz, Caglayan;Ozan, Kadir
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • In this study, the decolorization of Evercion Blue P-GR (EBP) and Ostazin Black H-GRN (OBH) was investigated using white-rot fungi named as Trametes versicolor (T. versicolor) by Membrane Bioreactor (MBR) system. This study involved experiments employing synthetic textile wastewater in Membrane Bioreactor (MBR) system (170 ml), initially inoculated with a pure culture of fungi, but operated, other than controlling pH (4.5±0.2) and temperature (25±1℃), under non-sterile conditions. The effect of dye concentrations on fungal biodegradation was also investigated. The decolorization efficiencies were 98%, 90%, and 87% respectively, for EBP when the initial dye concentration of 50, 100, and 200 mg L-1 were used. However, the decolorization percentages for OBH dye were obtained 95% for 50 mg L-1 dye solution in 2 days and 66% for 100 mg L-1 dye solution in 5 days. Possible interactions between dye molecules and the fungal surface were confirmed by SEM, EDX, and FTIR analyses.

Comparison of cellulolytic enzyme productivities in various semicontinuous culture modes of Trichoderma inhamatum KSJ1 (Trichoderma inhamatum KSJ1의 반연속배양 방식에 따른 섬유소분해효소의 생산성 비교)

  • Li, Hong-Xian;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.70-74
    • /
    • 2009
  • For continuous culture of cellulolytic enzymes production to saccharify food wastes, refill concentration of Mandel's medium for continuous culture was 0.5%, and refill intervals were determined to 12 hours by analysis of COD and total nitrogen concentration after 4-days batch culture in flask level. As a result, amylase and FPase productivities were 3.5 and 1.0 U/L.hr, respectively. In 10 L bioreactor, the batch culture mode was compared with fed-batch, fill-and-draw for continuous production of cellulolytic enzyme. Enzyme productivities were most high at batch culture and followed by fed-batch culture. Amylase and FPase activities were 42.3 and 5.6 U/L.hr at batch culture, and 23.0, 2.8 U/L.hr at fed-batch culture, respectively. As a result, in continuous cultivation of cellulolytic enzymes by T. inhamatum KSJ1, the mode of fed-batch was most effective in 10 L bioreactor.

A High-Yielding, Generic Fed-Batch Process for Recombinant Antibody Production of GS-Engineered Cell Lines

  • Fan, Li;Zhao, Liang;Sun, Yating;Kou, Tianci;Zhou, Yan;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1695-1702
    • /
    • 2009
  • An animal-component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of by-products (lactate and osmolality). The proportionalities of nutritional consumption were determined by direct analysis. The robust, metabolically responsive feeding strategy was based on the offline measurement of glucose. The fed-batch process was shown to perform equivalently in GS-CHO and GS-NS0 cultures. Compared with batch cultures, the fed-batch technology generated the greater increase in cell yields (5-fold) and final antibody concentrations (4-8-fold). The majority of the increase in final antibody concentration was a function of the increased cell density and the prolonged culture time. This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines.

Effect of Inorganic Salts and Various Bioreactors on the Production of Clavulanic Acid (무기염과 생물반응기의 종류가 Clavulanic acid의 생산에 미치는 영향)

  • Kim, Il-Chul;Kim, Seung-Uk
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.440-444
    • /
    • 1999
  • For the effecient production of clavulanic acid., a mutant strain Streptomyces clavuligerus KK was selected from Streptomyces clavuligerus ATCC 27064 through mutation with NTG. S. clavuligerus ATCC 27064 produced about 200 mg/L of calvulanic acid when the medium was composed of 1%(W/V) glycerol, 1.5%(W/V) soybean flour, 0.1%(W/V) $KH_2PO_4$, 0.2%(V/V) soybean oil. A selected mutant, S. clavuligerus KK, produced about 1150 mg/L of clavulanic acid in the same medium. After the addition of $MgSO_4$ to the basal medium, S. clavuligerus KK produced about 1550 mg/L of clavulanic acid, with shows about 1.3 times higher than that produced in the basal medium. In order to select the proper bioreactor for the production of clavulanic acid, a batch culture was performed in an airlift, a bubble column and an stirred tank bioreactors. In an airlift bioreactor, about 1350 mg/L of clavulanic acid was produced, in a bubble column bioreactor, about 1550 mg/L, in a stirred tank bioreactor, about 2200 mg/L, respectively. The production of clavulanic acid in stirred tank bioreactor was about 50% higer than that by an airlift and a bubble column bioreactors. According to this result, the stirred tank bioreactor was selected as a proper bioreactor.

  • PDF

Comparison of Bio-ethanol Productivity Using Food Wastes by Various Culture Modes (에탄올 발효방법에 따른 음식물류 폐기물의 바이오에탄올 생산성 비교)

  • Kang, Hee-Jeong;Li, Hong-Xian;Kim, Yong-Jin;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.471-477
    • /
    • 2010
  • In order to improve bio-ethanol productivity by various cultivation methods in this paper, the culture modes using food wastes, such as batch culture, high-cell-density fermentation, SSF (simultaneous saccharification and fermentation) by fill & draw, continuous culture by fill & draw were performed and their productivities were compared. SSFs by fill & draw were performed by continuous decompression using 1 L evaporator system, and by 10 L bioreactor without decompression. In addition, the continuous cultures by fill & draw mode using SFW (saccharafied food wastes) medium were performed by changes of 40% culture broth with intervals of 12 h (0.03 $h^{-1}$), 6 h (0.07 $h^{-1}$), 3 h (0.13 $h^{-1}$). Consequently, productivities of bio-ethanol were 2.52 g/L-h and 1.30 g/L-h in batch culture and high- cell-density fermentation, respectively. The productivities of SSF by fill & draw showed 2.24 g/L-h and 2.03 g/L-h in continuous decompression with 1 L evaporator and 10 L bioreactor without decompression, respectively. Also, the productivities in continuous culture by fill & draw modes showed 2.02 g/L-h, 4.07 g/L-h and 6.25 g/L-h by medium change with intervals of 12 h, 6 h, and 3 h, respectively. In conclusion, the highest ethanol productivity was obtained in the continuous culture mode by fill & draw with dilution rate of 0.13 $h^{-1}$.

Optimization of Submerged Culture Conditions for Mycelial Growth and Exopolysaccharides Production by Agaricus blazei

  • Kim, Hyun-Han;Na, Jeong-Geol;Chang, Yong-Keun;Chun, Gie-Taek;Lee, Sang-Jong;Jeong, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.944-951
    • /
    • 2004
  • The influences of inoculum size, pH, and medium composition on mycelial growth and exopolysaccharides (EPS) production were investigated in shake flasks and in a bioreactor. The optimum inoculum size for both mycelial growth and EPS production was identified to be 10% (v/v) in shake flask cultures. The optimal initial pH for mycelial growth and EPS production in shake flask cultures were found to be 5.0 and 7.0, respectively. However, the optimal pH was 5.0 for both mycelial growth and EPS production in bioreactor cultures where the pH was regulated. The optimal mass ratio of the two major carbon sources, glucose to dextrin, was 1:4. The optimal mass ratio of the two major nitrogen sources, yeast extract to soy tone peptone, was 2:1. When 500 mg $1^{-1}$ of $MnSO_4-5H_2O$ was added to the bioreactor culture, both mycelial growth and EPS production were enhanced by approximately 10%. Under the optimized conditions, a mycelial biomass of 9.85 g $1^{-1}$ and an EPS concentration of 4.92 g $1^{-1}$ were obtained in 4 days.

Fed-batch Cultivation of Escherichia coli YK537 (pAET-8) for Production of phoA Promoter-controlled Human Epidermal Growth Factor

  • Wang Yonggang;Du Peng;Gan Renbao;Li Zhimin;Ye Qin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.149-154
    • /
    • 2005
  • Secretion of the expressed heterologous proteins can reduce the stress to the host cells and is beneficial to their recovery and purification. In this study, fed-batch cultures of Escherichia coli YK537 (pAET-8) were conducted in a 5-L fermentor for the secretory production of human epidermal growth factor (hEGF) whose expression was under the control of alkaline phosphatase promoter. The effects of feeding of glucose and complex nitrogen sources on hEGF production were investigated. When the fed-batch culture was conducted in a chemically de-fined medium, the cell density was 9.68 g/L and the secreted hEGF was 44.7 mg/L in a period of 60 h. When a complex medium was used and glucose was added in pH-stat mode, the secreted hEGF was improved to 345 mg/L. When the culture was fed with glucose at a constant specific rate of $0.25\;gg^{-1}h^{-1}$, hEGF reached 514 mg/L. The effects of adding a solution containing yeast extract and tryptone were further studied. Different rate of the nitrogen source feeding resulted in different levels of phosphate and acetic acid formation, thus affected hEGF expression. At the optimal feeding rate, hEGF production achieved 686 mg/L.

Growth Characteristics of in Vitro Mass Propagated Plantlets of Ever-bearing Strawberry 'Goha' according to Aeration Rate in Bioreactor (사계성 딸기 '고하' 조직배양묘의 대량증식 시 생물반응기 내 공기주입량에 따른 생육 특성)

  • Kim, Hye-Jin;Lee, Jong-Nam;Kim, Ki-Deog;Im, Ju-Sung;Lim, Hak-Tae;Yeoung, Young-Rok
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.432-436
    • /
    • 2012
  • This study was conducted to determine the optimal aeration rate for mass propagation of ever-bearing strawberry by bioreactor culture. The aeration rate was treated in four levels: 0.1 vvm (air volume/medium volume/min), 0.2 vvm, 0.3 vvm, and 0.4 vvm. In 0.2 vvm conditions, shoot length was the longest at 9.03 cm in bioreactor culture, leave numbers were 40.4 ea and fresh weight was 6,106 mg. Plant growth rate at 0.2 vvm condition was faster than other treatments. In the aeration condition, 0.2 vvm was most effective to increase aerial part growth and to decrease medium consumption. As the culture periods increased, the fresh weight also increased rapidly. After six weeks of cultivation, shoots were emerged with 10.4 ea per plantlet, resulting in developing a complete plant. As a result, the bioreactor culture system for mass propagation of strawberry is required to continuously supply the air by 0.2 vvm speed and cultivate at least for six weeks.

Production of Citric Acid in a Flat-type Membrane Bioreactor (평판형 막 생물 반응기를 이용한 구연산의 생산)

  • 심상준;장호남
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.252-257
    • /
    • 1992
  • A flat-type membrane bioreactor(FMBR ) for aerobic whole cell immobilization was developed and its performance for the citric acid production was investigated using Aspergillus niger (KCTC 1232). The reactor consisted of three layers. The top layer contained flowing air for oxygen supply, the middle layer had stationary cells, and the bottom layer had flowing aqueous nutrients. The initial pH of the culture medium played an important role in citric acid production and the lower initial pH of the culture medium resulted in a higher citric acid yield. Under air and pure oxygen aerations the volumetric productivity reached 0.20 and 0.40g/Lh. Furthermore, the productivity improved with the increase of the culture medium feed rate.

  • PDF