Applications of Yeast Flocculation in Biotechnological Processes

  • Domingues, Lucilia (Centro de Engenharia Biologica-IBQF, Universidade do Minho, Campus de Gualtar) ;
  • Vicente, Antonio A. (Centro de Engenharia Biologica-IBQF, Universidade do Minho, Campus de Gualtar) ;
  • Lima, Nelson (Centro de Engenharia Biologica-IBQF, Universidade do Minho, Campus de Gualtar) ;
  • Teixeira, Jose A. (Centro de Engenharia Biologica-IBQF, Universidade do Minho, Campus de Gualtar)
  • Published : 2000.07.01

Abstract

A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects-the basics of yeast flocculation, the development of "new" flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous $\beta$-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculating bioreactors and discussing potential new uses of these systems.e systems.

Keywords

References

  1. J. Inst. Brew. v.64 Composite nature of the flocculation process of top and bottom strains of Sac-charomyces. Eddy, A. A.;M. A. D. Phil
  2. J. Gen. Microbiol. v.35 The nature of the interaction between flocculent cells in the flocculation of Saccharomyces cere-visiae. Mill, P. J.
  3. J. Inst. Brew. v.98 Colloidal aspects of yeast flocculation: a review. Speers, R. A.;M. A. Tung;T. D. Durance;G. G. Stew-art
  4. Arch. Biochem. Bio-physics v.154 Role of mitochondria in the sex-directed flocculation of a fission yeast. Calleja, G. B.
  5. Amer. Soc. Brew. Chem. Proc Fur-ther studies on flocculation and co-flocculation in brewer’s yeast strains. Stewart, G. G.;I. Russell;I. F. Garrison
  6. J. Ferment. Tech-nol. v.54 Induction of floc-forming ability in brewer ’s yeast. Nishihara, H.;T. Toraya;S. Fukui
  7. Arch. Microbiol. v.115 Effect of chemical modification of cell surface components of a brewer’s yeast on the floc-forming ability. Nishihara, H.;T. Toraya;S. Fukui
  8. Mem. Fac. Educ. Kagawa Univ. II v.20 Effect of physical, chemical and en-zymatic treatments on the floc-forming ability of intact cells and/or cell walls of a brewer ’s yeast. Nishihara, H.
  9. Mem. Fac. Educ. Kagawa Univ. II v.29 Effect of chemical modification of proteins on the cell walls of a brewer’s yeast on the floc-forming ability. Nishihara, H.;M. Ueda
  10. Arch. Mi-crobiol. v.131 Flocculation of cell walls of brewer ’s yeast and effects of metal ions, protein-denaturants and enzyme treatments. Nishihara, H.;T. Toraya;S. Fukui
  11. Biotechnol. Lett. v.11 Partial characterization of cell wall from a flocculent strain of Kluyveromyces marxia-nus. Teixeira, J., M. H. Goncalves, F. M. Gama, P. Moradas-Ferreira, and M. Mota
  12. Bio-chimie v.63 Caracterisation des constituants parietaux impliques dans la flocculation de levures Saccharomyces uvarum. Amri, M. A.;R. Bonaly;B. Duteurtre;M. Moll
  13. J. Bac-teriol. v.150 Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. Miki, B. L. A.;N. H. Poon;A. P. James;V. L. Seligy
  14. J. Inst. Brew. v.84 Aromatic com-pounds and sugars in [56] flocculation of Saccharomyces cerevisiae. Taylor, N. W.;W. L. Orton
  15. Agric. Biol. Chem. v.51 Essential role of cell surface protein and carbohydrate components in floccu-lation of a brewer ’s yeast. Nishihara, H.;T. Toraya
  16. A. Yeast v.8 Yeast flocculation: receptor defini-tion by mnn mutants and Concanavalin Stratford, M.
  17. Carbohydrate Res. v.280 Structure of the phosphopeptidomannans the flocculation process of top and bottom strains of lactis. Bilang, M.;F. Attioui;V. Loppinet;J.-C. Michalski;R. Bonaly
  18. Colloid Surf. B: Biointerf. v.2 Yeast flocculation-the role of cell wall proteins. Moradas-Ferreira, P.;P. A. Fernandes;M. J. Costa
  19. J. Gen. Microbiol. v.136 Antigenic studies on flocculating brewer’s yeast, Saccharomyces cere-visiae NCYC 227. Nagarajan, L.;S. Umesh-Kumar
  20. Kemia-Kemi v.10 Biochemical and genetic studies on yeast flocculation. Stewart, G. G.;I. F. Garrison;T. E. Goring;M. Meleg;P. Pipasts;I. Russell
  21. Biochim. Biophys. Acta v.1159 A protein homologous to glyceraldehyde-3-phosphate dehydrogenase is induced in the cell wall of a flocculent Kluyveromyces marxianus. Fernandes, P. A.;J. N. Keen;J. B. C. Findlay;P. Moradas-Ferreira
  22. Agric. Biol. Chem. v.54 Flocculation mechanism of Hansenula anomala J224. Saito, K.;S. Sato;H. Shimoi;H. Iefuji;M. Tadenuma
  23. Yeast v.9 Flocculation of Kluyveromyces marxianus is induced by a temperature upshift. Fernandes, P. A.;M. Sousa;P. Moradas-Ferreira
  24. Carlsberg Res. Commun. v.43 Isolation and characterization of a polypeptide absent from non-flocculent mutants of Sac-charomyces cerevisiae. Holmberg, S.
  25. Proc. Eur. Brew. Conv. Congr. Cloning of a gene controlling yeast flocculence. Watari, J.;Y. Takata;N. Nishikawa;K. Kamuda
  26. Can. J. Biochem. v.58 Robertson
  27. Microbiol. v.144 Kluyveromyces marxianus flocculence and growth at high temperature is dependent on the presence of the protein p37. Moreira, R. F.;P. A. Fernandes;P. Moradas-Ferreira
  28. J. Biol. Chem. v.263 Kluyveromyces bulgaricus yeast lectins. Isolation of N-acetylglucosamine and galactose-specific lectins: their relation with flocculation. Mahmood, S.;P. Giummelly;R. Bonaly;F. Delmotte;M. Monsigny
  29. J. Biol. Chem. v.266 Kluyveromyces bulgaricus yeast lectins. Isolation of two ga-lactose-specific lectin forms from the yeast cell wall. Al-Mahmood, S.;S. Colin;R. Bonaly
  30. Yeast v.10 Isolation and partial purification of mannose-specific ag-glutinin from brewer ’s yeast involved in flocculation. Straver, M. H.;V. M. Traas;G. Smit;J. W. Kijne
  31. Microbiol. v.140 A surface lectin associated with flocculation in brewing strains of Saccharomyces cerevisiae. Shankar, C. S.;S. Umesh-Kumar
  32. Yeast v.16 A mannose-binding protein from the cell surface of flocculent Saccharomyces cerevisiae (NCIM 3528): its role in flocculation. Javadekar, V. S.;H. Sivaraman;S. R. Sainkar;M. I. Khan
  33. Yeast v.5 Yeast flocculation: calcium specifi-city. Stratford, M.
  34. Yeast v.7 Yeast flocculation: Flo1 and New Flo phenotypes and receptor structure. Stratford, M.;S. Assinder
  35. Appl. Microbiol. Biotechnol. v.25 Comparative studies of flocculation and deflocculation of Saccharomyces uvarum and Kluyveromyces bulgaricus. Hussain, T.;O. Salhi;J. Lematre;C. Charpentier;R. Bonaly
  36. Appl. Microbiol. Biotechnol. v.49 Comparative extraction procedures for a galactose-specific lectin involved in flocculation of Kluyveromyces lactis strains. Behari, M.;J.N. Ekome;J. Coulon;B. Pucci;R. Bonaly
  37. Biotechnol. Lett. v.14 Differ-ences in the flocculation mechanism of Kluyveromyces marxianus and Saccharomyces cerevisiae. Sousa, M. J.;J. A. Teixeira;M. Mota
  38. Cerevisiae v.4 Bacterial-induced flocculation in selected brewing strains of Saccharomyces. Zarattini, R. A.;J. W. Williams;J. R. Ernandes;G. G. Stewart
  39. Adv. Microb. Physiol. v.33 Yeast flocculation: a new perspective. Stratford, M.
  40. J. Inst. Brew. v.81 Some considerations of the flocculation characteristics of ale and lager yeast strains. Stewart, G. G.;I. Russell;I. F. Garrison
  41. J. Inst. Brew. v.99 Physical properties of commercial brew-ing yeast suspensions. Speers, R. A.;T. D. Durance;P. Odense;S. Owen;M. A. Tung
  42. Yeast v.11 Re-view: The dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Teunissen, A. W. R. H.;H. Y. Steensma
  43. Can. J. Microbiol. v.38 Flocculation of Saccharomyces: inhibition by sugars. Masy, C. L.;A. Henquinet;M. M. Mestdagh
  44. Yeast v.10 Molecular cloning and analysis of the yeast flocculation gene FLO1. Watari, J.;T. Yoshihiro;M. Ogawa;H. Sahara;S. Koshino;M.-L. Onnela;U. Airaksinen;R. Jaatinen;M. Penttila;S. Keranen
  45. J. Bacteriol. v.179 Localization and cell surface anchoring of the Sac-charomyces cerevisiae flocculation protein Flo1p. Bony, M.;D. Thines-Sempoux;P. Barre;B. Blondin
  46. J. Bacteriol. v.180 Region of Flo1 proteins responsible for sugar recognition. Kobayashi, O.;N. Hayashi;R. Kuroki;H. Sone
  47. Yeast v.14 Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: the availability of Flop determines the flocculation level. Bony, M.;P. Barre;B. Blondin
  48. Conf. Biomass for Energy and Ind Isolation of a flocculating strain of K. marxianus by a continuous method. Abstracts of the 4th Eur. Teixeira, J;M. Mota
  49. Appl. Environ. Microbiol. v.58 Flocculence of Saccharomyces cerevisiae cells is in-duced by nutrient limitation, with cell surface hydro-phobicity as a major determinant. Smit, G.;M. H. Straver;B. J. J. Lugtenberg;J. W. Kijne
  50. Proc. Natl. Acad. Sci. USA v.93 MucI, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Lambrechts, M. G.;F. F. Bauer;J. Marmur;I. S. Preto-rius
  51. Genetics v.144 Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Liu, H.;C. A. Styles;G. R. Fink
  52. Mol. Biol. Cell v.9 The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Lo, W.-S.;A. M. Dranginis
  53. Microbial Adhesion and Aggregation. Physiology of cell aggregation. Floccu-lation by Saccharomyces cerevisiae as a model system. Rose, A. H.;K. C. Marshall (ed.)
  54. J. Inst. Brew. v.79 Effect of alkaline-earth metal salts on flocculence in Saccharomyces cerevisiae. Taylor, N. W.;W. L. Orton
  55. Can. J. Microbiol. v.37 Role of cations in the flocculation of Saccharomyces cerevisiae and discrimination of the corresponding proteins. Kuriyama, H.;I. Umeda;H. Kobayashi
  56. J. Inst. Brew. v.82 Effect of some monovalent and divalent metal ions on the flocculation of brewer’s yeast strains. Stewart, G. G.;T. E. Goring
  57. Eur. J. Appl. Microbiol. Biotechnol. v.7 Interrelation between Ca2+ and K+ ions in the floccula-tion of two brewer yeast strains. Amry, M. A.;R. Bonaly;B. Duteurtre;M. Moll
  58. Yeast v.6 Yeast floccula-tion: cationic inhibition. Stratford, M.;H. M. Brundish
  59. Can. J. Microbiol. v.34 Yeast flocculation: competition between non-specific repulsion and specific bonding in cell adhesion. Kihn, J. C.;C. L. Masy;M. M. Mestdagh
  60. Appl. Microbiol. Biotechnol. v.39 Must deacidification with an induced flocculant yeast strain of Schizosaccharomyces pombe. Sousa, M. J.;J. A. Teixeira;M. Mota
  61. FEMS Microbiol. Lett. v.136 Induction of flocculation in brewing yeasts by change in pH value. Stratford, M.
  62. Biotechnol. Tech. v.12 Induction of flocculation of Saccharomyces cerevisiae by a pH-upshift. Yang, Y. L.;C. Y. Choi
  63. J. Inst. Brew. v.98 Biochemical aspects of yeast flocculation and its measurement: A review. Speers, R. A.;M. A. Tung;T. D. Durances;G. G. Stewart
  64. Yeast v.9 Determinants of flocculence of brewer’s yeast during fermentation in wort. Straver, M. H.;P. C. van der Aar;G. Smit;J.W. Kijne
  65. J. Inst. Brew. v.94 Floc-culence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydro-phobicity. Amory, D. E.;P. G. Rouxhet;J. P. Dufour
  66. Trends Biotechnol. v.11 Cause and control of flocculation in yeast. Straver, M. H.;J. W. Kijne;G. Smit
  67. FEMS Microbiol. Lett. v.134 The importance of surface charge and hydrophobicity for the flocculation of chain-formation brewing yeast strains and resistance of these parameters to acid washing. Wilcocks, K. L.;K. A. Smart
  68. Colloid Surf. B: Biointerf. v.5 Cell wall surface properties and flocculence of a Kluyveromyces marxianus strain. Teixeira, J. A.;R. Oliveira;J. Azeredo;M. Sousa;C. Sil
  69. Yeast v.12 A rapid and selective assay for measuring cell surfaces hydrophobicity of brewer ’s yeast cells. Straver, M. H.;J. W. Kijne
  70. J. Bacteriol. v.150 Repres-sion and induction of flocculation interactions in Saccharomyces cerevisiae. Miki, B. L. A.;N. H. Poon;V. L. Seligy
  71. Biotechnol. Lett. v.13 Influence of aeration and glucose concentration in the flocculation of Saccharomyces cerevisiae. Soares, E. V.;J. A. Teixeira;M. Mota
  72. Yeast v.4 Yeast floccula-tion: quantification. Stratford, M.;M. H. J. Keenan
  73. Colloids Surf. B: Biointerf. v.3 Influence of medium composi-tion on surface properties and aggregation of a Saccharo-myces cerevisiae strain. Mozes, N.;L. L. Schinckus;C. Ghommidh;J.-M. Navarro;P. G. Rouxhet
  74. The Brewer Feb Flocculation, fluid dynamics and fining. Burrel, K.
  75. Appl. Microbiol. Biotechnol. v.20 Characterization of the physical properties of yeast flocs. Brohan, B.;A. J. McLoughlin
  76. Yeast v.4 Yeast flocculation: a dynamic equilibrium. Straford, M.;H. P. Coleman;M. H. J. Keenan
  77. Proc. Eur. Brew. Conv. Congr.: The flocculation characteristics of brewing yeasts during fermentation. Gilliland, R. B.
  78. Proc. Eur. Brew. Congr. Brighton: Some aspects of yeast flocculence. Thorne, R. S. W.
  79. The Brewer’s Digest Nov Flocculation of brewer’s yeasts. Windish, S.
  80. Proc. Soc. Gen. Microbiol. v.1 Genes controlling flocculation in yeast. Lewis, C. W.;J. R. Johnston
  81. Second International Symposium on the Genetics of Industrial Microorganisms. Genetic analysis of flocculation in Saccharomyces cerevisiae and tetrad analysis of commercial brewing and baking strains. Johnston, J. R.;C. W. Lewis;K. D. MacDonald (ed.)
  82. J. Inst. Brew. v.82 The genetics of yeast flocculation. Lewis, C. W.;J. R. Johnston;P. A. Martin
  83. Can. J. Microbiol. v.23 The identification, characterization, and mapping of a gene for flocculation in Saccharomyces sp. Stewart, G. G.;I. Russell
  84. J. Inst. Brew. v.86 Revised nomenclature of genes that control yeast flocculation. Russell, I.;G. G. Stewart;H. P. Reader;J. R. Johnston;P. A. Martin
  85. J. Bacteriol. v.178 FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. Lo, W.-S.;A. M. Dranginis
  86. FEMS Microbiol. Lett. v.146 Cloning of a new FLO gene from the flocculating Saccharomyces cerevisiae IM1-8b strain. Sieiro, C.;N. M. Reboredo;P. Blanco;T. G. Villa
  87. Agric. Biol. Chem. v.47 Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLO8 in the yeast Saccharomyces cere-visiae. Yamashita, I.;S. Fukui
  88. Agric. Biol. Chem. v.48 Genetic background of glucoamylase production in the yeast Saccharomyces. Yamashita, I.;S. Fukui
  89. FEMS Microbiol. Lett. v.112 Genetic evidence for a new flocculation suppressor gene in Saccharomyces cerevisiae. Sieiro, C.;E. Longo;J. Cansado;J. B. Velasquez;P. Calo;P. Blanco;T. G. Villa
  90. Yeast v.9 Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Teunissen, A. W. R. H.;E. Holub;J. van dern Hucht;J. A. van der Berg;H. Y. Steensma
  91. Agric. Biol. Chem. v.53 Molecular cloning of a flocculation gene in Saccharomyces cerevisiae. Watari, J.;Y. Takata;M. Ograwa;N. Nishikawa;K. Minoru
  92. Yeast v.8 Yeast flocculation: Reconciliation of physiological and genetic viewpoints. Stratford, M.
  93. Yeast v.11 Localization of the dominant floc-culation genes FLO5 and FLO8 of Saccharomyces cere-visiae. Teunissen, A. W. R. H.;J. A. van der Berg;H. Y. Steensma
  94. Mol. Gen. Genet. v.251 Molecular cloning and analysis of the dominant floccu-lation gene FLO8 from Saccharomyces cerevisiae. Kobayashi, O.;H. Suda;T. Ohtani;H. Sone
  95. Biotechnol. Lett. v.13 Mapping of the FLO5 gene of Saccharomyces cerevisiae by transfer of a chromosome during cytoduction. Vezinhet, F.;B. Blondin;P. Barre
  96. Curr. Genet. v.25 Cloning and analysis of a FLO5 floccula-tion gene from S. cerevisiae. Bidard, F.;B. Blondin;S. Dequin;F. Vezinhet;P. Barre
  97. Appl. Microbiol. Biotechnol. v.29 Flocculation in Saccharomyces cerevisiae and mitochondrial DNA struc-ture. Hinrichs, J.;U. Stahl;K. Esser
  98. Yeast v.13 Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a “Glo”-type Zn-finger-containing protein. Bossier, P.;P. Goethals;C. Rodrigues-Pousada
  99. Yeast v.16 Flocculation of Saccharomyces cerevisiae is induced by transformation with the GAP1 gene from Kluyveromyces marxianus. Moreira, R. F.;F. Ferreira-da-Silva;P. A. Fernandes;P. Moradas-Ferreira
  100. Brewer’s Guardian April The importance of the cell brewing yeast cell wall. Smart, K. A.
  101. Amer. Soc. Brew. Chem. J. v.38 Use of genetic transformation for the introduction of floccu-lence into yeast. Barney, M. C.;G. P. Jansen;J. R. Helbert
  102. Biotechnol. Lett. v.6 Transfer of the flocculation property to the baker ’s yeast Saccharomyces cerevisiae by conventional genetic manipulation. Figueroa, L. I.;M. F. Richard;M. R. van Broock
  103. Microbios v.81 Introduction of flocculation into industrial yeast, Sac-charomyces cerevisiae sake, by protoplast fusion. Lima, N.;C. Moreira;J. A. Teixeira;M. Mota
  104. Agric. Biol. Chem. v.54 Construction of a flocculent yeast cells (Saccha-romyces cerevisiae) by mating or protoplast fusion a yeast cell containing the flocculation gene FLO5. Watari, J.;M. Kudo;N. Nishikawa;M. Kamimura
  105. Agric. Biol. Chem. v.55 Breeding of flocculent industrial Saccha-romyces cerevisiae strains by introducing the flocculation gene FLO1. Watari, J.;Y. Takata;M. Ogawa;J. Murakami;S. Koshino
  106. J. Inst. Brew. v.100 Construction of flocculent brewer ’s yeast by chromo-somal integration of the yeast flocculation gene FLO1. Watari, J.;M. Nomura;H. Sahara;S. Koshino
  107. J. Ferment. Bioeng. v.83 Intro-duction of flocculation property into wine yeasts (Sac-charomyces cerevisiae) by hybridization. Shinohara, T.;Mamiya, S.;Yanagida, F.
  108. J. Gen. Micro-biol. v.131 Discrimination by heat and proteinase treatments be-tween flocculent phenotypes conferred on Saccharomy-ces cerevisiae by the genes FLO1 and FLO5. Hodgson, J. A.;D. R. Berry;J. R. Johnston
  109. Yeast v.11 Genetically-modified brew-ing yeasts for the 21st century. Progress to date. Hammond, J. R. M.
  110. Yeast v.11 Genetic transformation of intact industrial flocculating yeast cells (Saccharomyces cerevisiae) by using lithium acetate and YAC4 plasmid. Venancio, A.;N. Lima;M. Mota
  111. J. Basic Microbiol. v.1 Trans-formation of a flocculating Saccharomyces cerevisiae using lithium acetate and pYAC4. Venancio, A.;L. Domingues;N. Lima
  112. Appl. Microbiol. Biotechnol. v.51 Con-struction of a flocculent Saccharomyces cerevisiae fer-menting lactose. Domingues, L.;J. A. Teixeira;N. Lima
  113. Proc. Natl. Acad. Sci. USA v.82 Construction of strains of Saccharomyces cerevisiae that grow on lac-tose. Sreekrishna, K.;R. C. Dickson
  114. Biotechnology v.10 Saccharomyces cerevisiae cells se-creting an Aspergillus niger β-galactosidase grown on whey permeate. Kumar, V.;S. Ramakrishna;T. T. Teeri;J. K. C. Knowles;B. S. Hartley
  115. Appl. Microbiol. Biotechnol. v.54 Construction of a flocculent brewer’s yeast strain secreting Aspergillus niger β-galactosidase. Domingues, L.;M.-L. Onnela;J. A. Teixeira;N. Lima;M. Penttila
  116. Curr. Microbiol. v.20 Utilization of an ex-ternal loop bioreactor for the isolation of a flocculating strain of Kluyveromyces marxianus. Mota, M.;J. A. Teixeira
  117. Bio-process Eng. v.5 Continu-ous ethanol production of a flocculating strain of Kluyveromyces marxianus: bioreactor performance. Teixeira, J. A.;M. Mota;G. Goma
  118. Biotechnol. Bioeng. v.64 Continuous ethanol fermentation of lac-tose by a recombinant flocculating Saccharomyces cere-visiae strain. Domingues, L.;M. M. Dantas;N. Lima;J. A. Teixeira
  119. Bioprocess Eng. v.7 Enhance-ment of metabolic rates of yeast flocculent cells through the use of polymeric additives. Lima, N.;J. A. Teixeira;M. Mota
  120. Biotechnol. Lett. v.16 An explanation for the interaction mechanism of an anionic polymeric ad-ditive on yeast flocculent cells. Sousa, M. L.;J. A. Teixeira
  121. J. Ind. Microbiol. v.15 Industrial yeast strain improvement: construction of a highly flocculent yeast with a killer character by proto-plast fusion. Javadekar, V. S.;H. SivaRaman;D. V. Gokhale
  122. Advances in Biotechnological Processes 1. Airlift fermenters: con-struction, behavior, and uses. Onken, U.;P. Weiland
  123. Biotechnol. Bioeng. v.38 Two- and three-phase mixing in a concentric tube gas-lift fermentor. Kennard, M.;M. Janekeh
  124. Chem. Eng. Sci. v.47 Applications of airlift gas-liquid-solids reactors in biotechnology. Siegel, M. H.;C. W. Robinson
  125. AIChE J. v.40 Concentric-tube airlift reactors: effects of geometrical design on performance. Merchuk, J. C.;N. Ladwa;A. Cameron;M. Bulmer;A. Pickett
  126. Bioprocess Eng. v.11 Com-parative analysis of ethanolic fermentation in two con-tinuous flocculation bioreactors and effect of floccula-tion additive. Sousa, M. L.;J. A. Teixeira;M. Mota
  127. Col. Surf. B: Biointerfaces v.2 Influ-ence of operational parameters on the start-up of a floc-culation airlift bioreactor. Sousa, M. L.;M. Mota;J. A. Teixeira
  128. Bioproc-ess Eng. v.12 Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors. Ganzeveld, K. J.;Y. Chisty;M. Moo-Young
  129. Biotechnol. Lett. v.18 Characterization of oxygen uptake and mass transfer in flocculent yeast cell cultures with or without a flocculation additive. Sousa, M. L.;J. A. Teixeira
  130. Bioreactor Engineering Course Workshop Notes. Air-lift bioreactors. Michalski, H. J.;M. Berovic(ed.);T. Koloini(eds.)
  131. Bioproc-ess Eng. v.19 Effect of liquid-phase surface tension on hydrodynamics of a three-phase air-lift bioreactor with an enlarged degassing zone. Freitas, C.;J. A. Teixeira
  132. Biotechnol. Bioeng. v.35 Mass transfer phenomena in an airlift reactor: effects of solids loading and temperature. Smith, B. C.;D. R. Skidmore
  133. Proceedings of the 2nd Interna-tional Fluid Dynamics no.September Hydrodynamics and mass transfer in a three-phase airlift reactor. Siegel, M. H.;M. Hallaile;M. Herskowitz;J. C. Merchuk
  134. Bioprocess Eng. v.18 Hydrodynamic stud-ies in an airlift reactor with and enlarged degassing zone. Freitas, C.;J. A. Teixeira
  135. Chem. Eng. Sci. v.50 Liquid velocity and gas holdup in three-phase internal loop air-lift reactors with low density particles. Lu, W.-J.;S.-J. Hwang;C.-M. Chang
  136. Bioprocess Eng. v.14 Hydrodynamic performance of a three-phase airlift bioreactor with an enlarged degassing zone. Vicente, A. A.;J. A. Teixeira
  137. Biotechnol. Tech. v.12 Solid-phase distribu-tion in an airlift reactor with an enlarged degassing zone. Freitas, C.;J. A. Teixeira
  138. Chem. Eng. Sci. v.47 Hydrodynamic and mass transfer study of a gas-liquid-solid draft tube spouted bed bioreactor. Karamanev, D. G.;T. Nagamune, and I. Endo
  139. Proceedings of the International Conference on Bioreactors and Biotransforma-tions. no.November Hydrodynamics, axial dispersion and gas-liquid oxigen transfer in an airlift loop bioreactor with three-phase flow. Verlaan, P.;J. Tramper
  140. Hungarian J. Ind. Chemstry v.22 Investigation of gas-liquid oxygen transport in three-phase bioreactor. Komaromy, P.;C. Sisak
  141. Chem. Eng. J. v.43 Experimental assess-ment of internal diffusion limitations in yeast flocs. Teixeira, J. A.;M. Mota
  142. Biotechnol. Lett. v.13 Reduction of diffu-sional limitations in yeast flocs. Sousa, M. L.;J. A. Teixeira
  143. Biotechnol. Bioeng. v.47 Oxy-gen transfer and culture characteristics of self-immobilized Solanum aviculare aggregates. Ananta, I.;M. A. Subroto;P. M. Doran
  144. Biotechnol. Bioeng. v.32 The effective diffusive permeability of a nonreacting solute in microbial cell aggregates. Libicki, S. B.;P. M. Salmon;C. R. Robertson
  145. Bio-technol. Tech. v.8 The strength of yeast flocs produced by the cati-onic flocculant chitosan: Effect of suspension medium and of pretreatment with anionic polyelectrolytes. Weir, S.;D. K. Ramsden;J. Hughes;F. Le-Thomas
  146. Bioprocess Eng. v.15 The mechanism of floccu-lation of a Saccharomyces cerevisiae cell homogenate us-ing polyethyleneimine. Salt, D. E.;A. C. Bentham;S. Hay;A. Idris;J. Gregory;M. Hoare;P. Dunnill
  147. Bioprocess Eng. v.12 Biofilm thickness effect on the diffu-sion limitation in the bioprocess reaction: Biofloc criti-cal diameter significance. Hamdi, M.
  148. Biotechnol. Bioeng. v.51 Sizing and counting of Saccharomyces cerevisiae floc populations by image analysis, using an automatically calculated threshold. Vicente, A.;J. M. Meinders;J. A. Teixeira
  149. Biochem. Eng. J. v.2 Mass transfer properties of glucose and O ₂in Saccharomyces cerevisiae flocs Vicente, A. A.;M. Dluhy;E. C. Ferreira;M. Mota;J. A. Teixeira
  150. Biotechnol. Tech. v.11 A new technique for measuring kinetic and mass transfer parameters in flocs of Saccharomyces cerevisiae. Vicente, A. A.;M. Dluhy;J. A. Teixeira
  151. Bioprocess Eng. v.18 Modelling diffusion-reaction phenomena in yeast flocs of Saccharomyces cerevisiae. Vicente, A. A.;M. Dluhy;E. C. Ferreira;J. A. Teixeira
  152. Biotechnol. Bioeng. v.68 On the contamination of flocculating yeast high cell density continuous bioreactor. Domingues, L.;N. Lima;J. A. Teixeira
  153. Pro-files on Biotechnology. Flocculation bioreac-tors. Teixeira, J. A.;M. Mota;T. G. Villa(eds.);J. Abalde(eds.)
  154. J. Chem. Tech. Biotechnol. v.31 Criteria for the prediction of diffu-sional control within whole cells and cell flocs. Webster, I. A.
  155. Can. J. Chem. Eng. v.77 in-crease of ethanol productivity in an airlift reactor with a modified draught tube. Vicente, A. A.;M. Dluhy;J. A. Teixeira
  156. Chem. Engi-neer no.May Tower-fer-mentation systems and their applications. Greenshields, R. N.;E. L. Smith
  157. Chem. Engineer no.January Tower-fer-mentation systems and their application to aerobic pro-cesses. Smith, E. L.;R. N. Greenshields
  158. Proceedings of EBC Con-gress v.1997 main fermentation with immobi-lized yeast . a breakthrough? Linko, M.;I. Virkajarvi;N. Pohjala;K. Lindborg;J. Kronlof;E. Pajunen
  159. J. Inst. Brew. v.103 A realistic view on the role of research in the brewing industry today. Masschelein, C. A.
  160. J. Inst. Brew. v.103 New developments in the brewing industry using immobilized yeast cell bioreac-tor systems. Mensour, N. A.;A. Margaritis;C. L. Briens;H. Pilking-ton;I. Russel
  161. Bio-technol. Tech. v.11 Reactors for continuous pri-mary beer fermentation using immobilized yeast. Smogrovicova, D.;Z. Domeny;P. Gemeiner;A. Malovik-ova;E. Sturdik
  162. Biotechnol. Lett. v.20 Continuous secon-dary fermentation using immobilized yeast. Domeny, Z.;D. Smogrovicova;P. Gemeiner;E. Sturdik;J. Patkova;A. Malovikova
  163. Biotechnol. Prog. v.15 Immobi-lized yeast bioreactor systems for continuous beer fer-mentation. Tata, M.;P. Bower;S. Bromberg;D. Duncombe;J. Fe-hring;V. Lau;D. Ryder;P. Stassi
  164. J. Ferment. Bioeng. v.68 The effect of aeration on stability of con-tinuous ethanol fermentation by a flocculating yeast. Kida, K.;M. Yamadaki;S.-I. Asano;T. Nakata;Y. Sonoda
  165. Biotechnol. Lett. v.14 Continuous alcoholic fermentation of su-crose using flocculating yeast. The limits of invertase activity. Fontana, A.;C. Ghommidh;J. P. Guiraud;J. M. Na varro
  166. J. Ferment. Bioeng. v.47 Repeated-batch fermentation process using a thermo-tolerant flocculating yeast constructed by protoplast fu-sion. Kida, K.;K. Kume;S. Morimura;Y. Sonoda
  167. Biotechnol. Lett. v.15 Optimization of two-stage con-tinuous ethanol fermentation using flocculating yeast. Kuriyama, H.;H. Ishibashi;H. Miyagawa;H. Kobayashi;M. Eiichi
  168. FEMS Microbiol. Rev. v.14 Continuous ethanol production by flocculating yeast in the fluidized bed bioreactor. Wieczorek, A.;H. Michalski
  169. Bioprocess Eng. v.12 Hydraulic model of a gas-lift bioreactor with flocculating yeast. Roca, E.;C. Ghommidh;J. M. Navarro;J. M. Lema
  170. Biotechnol. Lett. v.17 Inulin enrichment by fermentation in a floc-culating yeast reactor. Schorr-Galindo, S.;C. Ghommidh;J. P. Guiraud
  171. Appl. Microbiol. Biotechnol. v.45 ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. Abate, C.;D. Callieri;E. Rodriguez;O. Garro
  172. J. Chem. Technol. Biotechnol. v.72 Kinetic and technical studies on large-scale cul-ture of Rhoiola sachalinensis compact callus aggregates with air-lift reactors. Jianfeng, X.;X. Jian;H. Aiming;F. Pusun;S. Zhiguo
  173. Proceedings of the EBC Congress Beer maturation in a continuously operating bioreactor using a flocculation brewer ’s yeast strain. Mafra, I.;J. M. M. Cruz;J. A. Teixeira
  174. Curr. Genet. v.35 Continuous cheese whey permeate alco-holic fermentation with a flocculent recombinant Sac-charomyces cerevisiae. Domingues, L.;M. M. Dantas;J. A. Teixeira;N. Lima