• Title/Summary/Keyword: bioreactor culture

Search Result 302, Processing Time 0.033 seconds

Use of the Temporary Immersion Bioreactor System for Mass Production of Eucalyptus pellita Plus Tree (간헐적 침지 방식의 생물반응기 시스템을 이용한 유칼리 선발목 클론 대량증식)

  • Kim, Seon-Ja;Park, So-Young;Moon, Heung-Kyu;Lee, Wi-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • The application of bioreactor culture techniques for plant micropropagation is regarded as one of the ways to reduce production cost by scaling-up and automation. In an attempt to optimize mass proliferation systems in Eucalyptus pellita, four types of bioreator systems including temporary immersion system with or without net were tested. Highest growth was achieved with 30-min flushes of medium at every 4-h intervals in TIN (temporary immersion with net) system. Results indicate over three-fold increase in shoot growth with the TIN system when compared with TIX (control: temporary immersion without net) system which is without net in bioreactor. Furthermore, plants produced from the TIN system increased total chlorophyll content, chlorophyll a/b and dry matter, giving higher yields of acclimatized plants. Our findings suggest that plantlet growth increases with appropriate exposure to media at correct intervals, as well as use of net for maintaining aerobic condition in the vessels. The TIN system thus has great potential for in vitro mass production of Eucalyptus clones commercially.

Effects of Aeration Rate and Sparger Type on Growth and Ginsenoside Accumulation in Bioreactor Cultures of Ginseng Adventitious Root(Panax ginseng C.A. Meyer) (생물반응기내의 공기주입량 및 Sparger 형태가 인삼 (Panax ginseng C.A. Meyer) 부정근의 생장과 Ginsenoside 함량에 미치는 영향)

  • Kim Yun-Soo;Hahn Eun-Joo;Shin Cha-Gyun;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.111-116
    • /
    • 2005
  • The two different ways to supply air inside the bioreactor were examined in the adventitious root cultures of Panax ginseng C.A. Meyer. First, the aeration rate varied at 0.05, 0.1, 0.2 and 0.3 vvm, respectively which were supplied during the whole culture period. Second, the amount of air supply was increased from 0.05 to 0.3 vvm at 10-day intervals in proportion to the root growth. Both the root growth and the ginsenoside accumulation were maximized to 175.8 g dry wt. of root growth and 4.3 mg/g dry wt. of ginsenoside accumulation when the aeration rate was increased gradually. The effect of the sparger pore size (15, 30 and $60\;{\mu}m$) in the bioreactor was also investigated, which suggested the greatest root growth (175.9 g dry wt.) in the $15{\mu}m$-sized sparger and the highest ginsenoside content (4.3 mg/g dry wt.) in the $60\;{\mu}m$ size. Finally, the diameter of a sparger ($15\;{\mu}m$-sized) varied at 1.5, 3.0, 5.0 and 8.0 cm, respectively. The highest root growth (191.9 g dry wt.) and the ginsenoside content (4.9 mg/g dry wt.) were obtained in the sparger diameter of 8.0 cm.

Production of Humanised Anti-hepatitis B Antibody in Butyrate-Treated Chinese Hamster Ovary Cells (Butyrate처리된 차이니즈 햄스터 난소세포에서 Hepatitis B 바이러스 인간화항체의 생산)

  • Park Se-Cheol;Lee Jae-Sun;Lee Byung-Kyu;Kang Heui-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.47-51
    • /
    • 2006
  • Sodium butyrate (NaBu) is used as an enhancer for the production of recombinant proteins in Chinese hamster ovary (CHO) cells. However, NaBu is well-known for its cytotoxic effect, thereby inducing apoptosis. CHO cells which had been engineered to express a humanised anti-HBV antibody were cultured using serum-free medium, Ex-cell 301. From a seeding density of $2{\times}10^5$ cells/ml, CHO cells grown with serum-free medium reached a maximum cell density of $1.3{\times}10^6$ cells/ml after 9 days in culture and produced a maximal antibody concentration of 130 mg/l after 13 days in culture. In the perfusion culture system, CHO cells producing anti-HBV antibody grown in an 7.5 1 bioreactor seeded with $2{\times}10^5$ cells/ml reached a maximal antibody concentration of 85 mg/1 after 720 h in culture. The addition of 0.3 mM NaBu and lowering culture temperature to $33^{\circ}C$ elongated the culture period to 60 days and increased the production yield by 2-fold, compared to control culture.

Differences in Optimal pH and Temperature for Cell Growth and Antibody Production Between Two Chinese Hamster Ovary Clones Derived from the Same Parental Clone

  • Kim, Sung-Hyun;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.712-720
    • /
    • 2007
  • To investigate clonal variations of recombinant Chinese hamster ovary(rCHO) clones in response to culture pH and temperature, serum-free suspension cultures of two antibody-producing CHO clones(clones A and B), which were isolated from the same parental clone by the limiting dilution method, were performed in a bioreactor at pH values in the range of 6.8-7.6, and two different temperatures, $33^{\circ}C\;and\;37^{\circ}C$. In regard to cell growth, clone A and clone B displayed similar responses to temperature, although their degree of response differed. In contrast, clones A and B displayed different responses to temperature in regard to antibody production. In the case of clone A, no significant increase in maximum antibody concentration was achieved by lowering the culture temperature. The maximum antibody concentration obtained at $33^{\circ}C$(pH 7.4) and $37^{\circ}C$(pH 7.0) were $82.0{\pm}2.6$ and $73.2{\pm}4.1{\mu}g/ml$, respectively. On the other hand, in the case of clone B, an approximately 2.5-fold increase in maximum antibody concentration was achieved by lowering the culture temperature. The enhanced maximum antibody concentration of clone B at $33^{\circ}C$($132.6{\pm}14.9{\mu}g/ml$ at pH 7.2) was due to not only enhanced specific antibody productivity but also to prolonged culture longevity. At $33^{\circ}C$, the culture longevity of clone A also improved, but not as much as that of clone B. Taken together, CHO clones derived from the same parental clone displayed quite different responses to culture temperature and pH with regards antibody production, suggesting that environmental parameters such as temperature and pH should be optimized for each CHO clone.

Effect of NO3- and NH4+ Concentrations on Root Growth and Eleutherosides Accumulation in adventitious root Culture of Eleutherococcus senticosus (가시오갈피의 부정근 배양시 부정근의 생육과 eleutheroside류의 함량에 미치는 NO3-와 NH4+ 비율 및 농도의 영향)

  • Ahn, Jin-Kwon;Lee, Wi-Young;Park, Young-Ki
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.48-53
    • /
    • 2007
  • This study was carried out to investigate the effect of $NO_3{^-}$ and $NH_4{^+}$ on the adventitious root growth and eleuthroside synthesis of Eleutherococcus senticosus during 3 L-bioreactor culture. The change of medium component ratio was also measured during culture. The fresh weignt of adventitious root reached to the greatest level of 24.4g FW/L in the presence of 50 mM $NO_3{^-}$ and 10 mM $NH_4{^+}$, representing 3.4-fold increase compared to the 60 mM $NH_4{^+}$. However, as the increase of the portion of $NH_4{^+}$, the root growth was decreased. Maximum eleutheroside B and E1 production were $249{\mu}g/g$ and $43{\mu}g/g$, respectively, with 30 mM total nitrogen source. The maximum production of eleutheroside E were $788{\mu}g/g$ with 120 mM total nitrogen source. The greatest weight of adventitious root increased up to 6.2 fold of inoculum size within 9 weeks. The change of pH was influenced from 4.81 to 6.35 and the amounts of $NH_4{^+}$ and $K^+$ were decreased during culture periods. From these results we suggest, need further study of various treatment to increase the growth of biomass and the accumulation of useful secondary metabilites.

Effect of Jasmonic Acid on the Root Growth and the Eleutheroside Accumulation in the Adventitious Root Culture of Eleutherococcus senticosus (가시오갈피나무 부정근(不定根) 배양(培養)에서 부정근(不定根)의 생장(生長)과 Eleutheroside유(類)의 생산(生産)에 미치는 Jasmonic acid처리(處理)의 영향)

  • Ahn, Jin-Kwon;Lee, Wi-Young;Park, Eung-Jun;Park, Young-Ki
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.249-254
    • /
    • 2008
  • This study was carried out to investigate the dose-dependent effect of jasmonic acid on both the adventitious root growth and the accumulation of various eleutherosides in the Eleutherococcus senticosus bioreactor culture. The highest biomass production (4.6 g DW/L) was observed in the absence of jasmonic acid and the root growth was significantly decreased by increasing the jasmonic acid concentration. However, jasmonic acid stimulated the production of both eleutheroside B, E and $E_1$. The highest level of eleutheroside B and E ($476.3{\mu}g/g\;DW$ and $676.0{\mu}g/g\;DW$) was obtained by 0.5 mg/L jasmonic acid treatment, while eleutheroside $E_1$ was accumulated at the highest level by 0.01 mg/L jasmonic acid treatment. The highest content of total eleutheroside was $2468.6{\mu}g/L$ when 0.01 mg/L jasmonic acid was applied. In addition, when the adventitious roots were cultured with 0.01 mg/L jasmonic acid, the highest levels of eleutheroside B, E and $E_1$ were observed at the 6th, 8th and 4th day of culture, respectively.

Production of Inhibitory Compounds against Helicobacter pylori by Culture Condition of Morus alba cv. Cheongmoknosang Callus (청목노상(Morus alba cv. Cheongmoknosang) callus의 배양조건에 따른 Helicobacter pylori 억제물질의 생산)

  • Cho, Young-Je;Cha, Won-Seup;Kang, Sun-Ae;An, Bong-Jeun;Ahn, Dong-Hyun;Kim, Myung-Uk;Chae, Jung-Woo
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.368-376
    • /
    • 2013
  • The optimal condition for Morus alba cv was an MS culture medium at $27^{\circ}C$ for 20 days. Cheongmoknosang callus showed inhibitory activity against Helicobacter pylori at 1.05 g of wet weight of the cultured callus. The callus formation of Morus alba cv. Cheongmoknosang was influenced by naphthalene acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D), 6-benzylaminopurine (BA) and kinetin at concentrations of 2 mg/l. The growth rate of callus was higher than it was when these hormones were mixed with a single hormone. Thus, the optimal condition for direct callogenesis was to incubate with mixture (2,4-D/NAA) of 2 mg/l concentration at $27^{\circ}C$ for 20 days. Moreover, the optimal culture condition of the biomass in the mass production of inhibitory compounds against Helicobacter pylori from Morus alba cv. Cheongmoknosang callus was to incubate in an MS broth (each concentration 1 mg/l of 2,4-D and BA). When Morus alba cv. Cheongmoknosang callus were incubated for 20 days in a bioreactor, Helicobacter pylori inhibition of callus extracts was the highest at a clear zone of 16 mm.

Effect of Methyl Jasmonate on the Root Growth and the Eleutheroside Accumulation in the Adventitious Root Culture of Eleutherococcus senticosus (가시오갈피나무 부정근(不定根) 배양(培養)에서 부정근(不定根)의 생장(生長)과 Eleutheroside류(類)의 생산(生産)에 미치는 Methyl jasmonate 처리(處理)의 영향)

  • Ahn, Jin-Kwon;Lee, Wi-Young;Park, Eung-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.331-336
    • /
    • 2010
  • This study was carried out to investigate the dose-dependent effect of methyl jasmonate on both the adventitious root growth and the accumulation of various eleutherosides in the bioreactor culture of Eleutherococcus senticosus adventitious roots. The highest biomass production (5.4 g DW/L) was observed in the absence of methyl jasmonate and the root growth was significantly decreased by increasing the methyl jasmonate concentration. However, methyl jasmonate stimulated the production of both eleutheroside B, E and $E_1$. The highest level of eleutheroside B (359.9 ${\mu}g$/g DW) was obtained at 40 ${\mu}M$ of methyl jasmonate, while eleutheroside E and $E_1$ was accumulated at the highest level by the addition of 10 ${\mu}M$ of methyl jasmonate. Total eleutheroside was increased up to 3818.1 ${\mu}g$ per liter when 10 ${\mu}M$ of methyl jasmonate was applied. In addition, when the adventitious roots were cultured with 20 ${\mu}M$ of methyl jasmonate, the highest levels of eleutheroside B, E and $E_1$ were observed at the 12th, 3th and 9th days of culture, respectively.

Continuos-Flow culture of Hepatocytes in Sugar-derivatized poly (lactide-co-glycolide) Scaffolds Prepared by Gas-foaming/salt-leaching Method

  • Yun, Jun-Jin;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.141-144
    • /
    • 2000
  • Highly open porous polymer matrices are required for high density cell seeding, efficient nutrient, and oxygen supply to the cells cultured in the three dimensional matrices. However, there are severe problems of mass transfer limitations within the cell/scaffolds culture system. Thus we hypothesize that continuos-flow culture conditioning of cells with the scaffolds may improve the cell viability and the differentiated function. In this study, we fabricated porous PLGA scaffolds by using gas-foaming/salt-leaching method as previous described. Viscous PLGA gel paste contains ammonium bicarbonate particulates, acting as a gas-foaming agent as well as a salt-leaching porogen, were cast into Teflon mold and dried. Ammonium bicarbonate salt upon contact to an acidic aqueous solution evloves gaseous ammonia and carbon dioxide by itself. And we conjugated galactose moiety [AGA; $N-(aminobuty1)-O-{\beta}-D-galactopyranosyl-(1{\rightarrow}4)-D-glucoamide]$ to the terminal end group of a PLGA to increase the cell adhesion and matain the differentiated function of hepatocytes. Cell-seeded scaffolds were secured in a flow bioreactor chamber and exposed to continuous flow at 5 ml/min. As a result of our study, the high yield of hepatocytes attachment was accomplished by increasing the concentration of PLGA-AGA conjugate in polymer scaffolds and cells in the scaffolds under continuos flow condition maintained a high level of viability and albumin secretion rate of cultured hepatocytes showed a higher level that of control groups.

  • PDF

Effects of Culture Conditions on Mycelial Growth and Polysaccharide Production of Tricholoma matsutake in Bioreactor

  • Choe, Min-Gu;Kim, Seong-Su;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.149-152
    • /
    • 2003
  • This experiment was carried out to obtain the optimal liquid culture conditions for the mycelial growth and the polysaccharide production of Tricholoma matsutake. For the mycelial growth and polysaccharide production, the synthetic medium was optimized with containing glucose 40 g/L, yeast extract 30 g/L, $KH_2PO_4$ 1.5 g/L and $MgSO_4.7H_2O$ 1 g/L. The effects of agitation and aeration were investigated for the cell growth and the polysaccharide production in batch culture. The biomass and polysaccharide concentrations were 21.87 g/L at 150 rpm and 8.86 g/L at 300 rpm, respectively. And the biomass concentration and the polysaccharide production were 20.85 g/L at 0.5 vvm and 8.83 g/L at 1.5 vvm, respectively.

  • PDF