Use of the Temporary Immersion Bioreactor System for Mass Production of Eucalyptus pellita Plus Tree

간헐적 침지 방식의 생물반응기 시스템을 이용한 유칼리 선발목 클론 대량증식

  • Kim, Seon-Ja (Gwacheon National Science Musium) ;
  • Park, So-Young (Forest Biotechnology Division, Korea Forest Research Institute) ;
  • Moon, Heung-Kyu (Forest Biotechnology Division, Korea Forest Research Institute) ;
  • Lee, Wi-Young (Forest Biotechnology Division, Korea Forest Research Institute)
  • 김선자 (국립과천과학관) ;
  • 박소영 (국립산림과학원 산림생명공학과) ;
  • 문흥규 (국립산림과학원 산림생명공학과) ;
  • 이위영 (국립산림과학원 산림생명공학과)
  • Received : 2010.01.25
  • Accepted : 2010.03.23
  • Published : 2010.03.31

Abstract

The application of bioreactor culture techniques for plant micropropagation is regarded as one of the ways to reduce production cost by scaling-up and automation. In an attempt to optimize mass proliferation systems in Eucalyptus pellita, four types of bioreator systems including temporary immersion system with or without net were tested. Highest growth was achieved with 30-min flushes of medium at every 4-h intervals in TIN (temporary immersion with net) system. Results indicate over three-fold increase in shoot growth with the TIN system when compared with TIX (control: temporary immersion without net) system which is without net in bioreactor. Furthermore, plants produced from the TIN system increased total chlorophyll content, chlorophyll a/b and dry matter, giving higher yields of acclimatized plants. Our findings suggest that plantlet growth increases with appropriate exposure to media at correct intervals, as well as use of net for maintaining aerobic condition in the vessels. The TIN system thus has great potential for in vitro mass production of Eucalyptus clones commercially.

식물대량증식에서 생물반응기의 이용은 규모를 대량화하고 자동화 할수 있다는 점에서 생산비를 절감할 수 있는 방법 중 하나이다. 본 연구에서는 유칼리 펠리타 선발목의 대량증식 체계를 확립하기 위해 4가지의 생물반응기 배양시스템에서 유칼리의 생장을 비교하였다. 배양기내에 지지물(net)을 설치하고 매 4시간마다 30분씩 액체배지를 공급한 TIN 배양(Temporary immersion with net)에서 식물체 생장이 가장 좋았다. TIN 시스템하에서 자란 식물체는 동일한 방식에 net가 없는 TIX 배양(Temporary immersion without net)에서 자란 식물체와 비교하여 초장이 3배 이상 증가하였다. 게다가 TIN 시스템에서 생산 된 식물체는 총 엽록소 함량, 엽록소 a/b, 그리고 건물중 등도 증가하였다. 위와 같은 결과는 기내 유칼리나무 생장에 중요한 요인이 식물체가 적당한 간격으로, 그리고 적당한 시간동안 배지에 노출되어야하고, net의 이용이 필수적임을 보여준다. TIN 시스템은 유칼리 클론묘의 대량생산을 위해 최적의 시스템으로 산업화를 위한 유칼리나무 대량생산시 유용하게 이용될 수 있을 것으로 생각된다.

Keywords

References

  1. Azmi, A., Noin, M., Landre, P., Prouteau, M., Boudet, A.M., and Chriqui, D. 1997. High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: Ontogenesis and ploidy level of the regenerants. Plant Cell, Tissue and Organ Culture 51: 9-16. https://doi.org/10.1023/A:1005920807555
  2. Avila, A., Pereyra S.M., and Arguello, J.A. 1998. Nitrogen concentration and proportion of ${NH_4}^+$-N affect potato cultivar reaponse in solid and liquid media. HortScience 33: 336-338.
  3. Bandyopadhyay, S., Cane, K., Rasmussen, G., and Hamill, J.D. 1999. Efficient plant regeneration from seedling explants of two commercially important temperate Eucalyptus species- Eucalyptus nitens and E. globulus. Plant Science 140: 189-198. https://doi.org/10.1016/S0168-9452(98)00221-0
  4. Chaves, M.M. 1994. Environmental constraints to photosynthesis in ex vitro-90-plants p. 1-18. In: P.J. Lumsden, J.R. Nicholas, and W.J. Davies (eds.). Physiology, growth and development of plants in culture. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  5. Cui, Y.Y., Hahn E.J., Kozai, T., and Paek, K.Y. 2000. Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro. Plant Cell, Tissue and Organ Culture 62: 219-226. https://doi.org/10.1023/A:1006412321864
  6. Dencso, I. 1987. Factors influencing vitrification of carnation and conifers. Acta Horticulturae 212: 167-176.
  7. Delaporte, K. and Sedgley, M. 2004. Selection and breeding of eucalyptus for ornamental horticulture. Acta Horticulturae 630: 77-84.
  8. Desjardins, Y., Gosselin, A., and Yelle, S. 1987. Acclimatization of in vitro strawberry plantlets under $CO_2$ enriched environment and supplemental lighting. Journal of American Society of Horticulture Science 112: 846-851.
  9. Driver, J.A. and Kuniyuki, A.H. 1984. In vitro propagation of Paradox walnut rootstock. Horticultural Science 19: 507-509.
  10. Eun, J.S. 1998. Acclimatization of in vitro plantlets of Wasabia japonica (Miq.) Matsum. derived from the apical meristem culture. Korean Journal of Plant Tissue Culture. 25: 257-261.
  11. Hahn, E.J. and Paek, K.Y. 2005. Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant Cell, Tissue and Organ Culture 81: 301-306. https://doi.org/10.1007/s11240-004-6655-0
  12. Hajari, E., Watt, M.P., Mycock, D.J., and McAlister, B. 2006. Plant regeneration from induced callus of improved Eucalyptus clones. South African Journal of Botany 72: 195-201. https://doi.org/10.1016/j.sajb.2005.07.003
  13. Harwood, C.E., Alloysius D., Pomroy, P., and Robson, K.W. 1997. Early growth and survival of Eucalyptus pellita provenances in a range of tropical environments, compared with E. grandis, E. urophylla and Acasia mangium. New Forests 14: 203-219. https://doi.org/10.1023/A:1006524405455
  14. Kim, J.A. and Moon, H.K. 2004. Effect of light-emitting diodes (LED) and ventilation on the in vitro shoot growth of Eucalyptus pellita. Journal of Korean Forrest Society 95: 716-722.
  15. Kim, J.A., Moon, H.K., and Kang, H.D. 2005. Effect of BA and NAA on adventitious bud induction from in vitro germinant Eucalyptus pellita. Korean Journal of Plant Biotechnology 32: 201-207.
  16. Kozai, T., Kubota, C., Zobayed, S.M.A., Nguyen, T.Q., Afreen-Zobayed, F., and Heo, J. 2000. Developing a masspropagation system of woody plants. In: Watanabe, K., Komamine, A. eds. Challenge of plant and agriculture sciences to the crisis of biosphere on the Earth in the 21st century. Georgetown, Landes Biosphere, pp293-306.
  17. Kozai, T. and Kubota, C. 2001. Developing a photoautotrophic micropropagation system for woody plants. Journal of Plant Research 114: 525-537. https://doi.org/10.1007/PL00014020
  18. Laine, E. and David, A. 1994. Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Reports 13: 473-476.
  19. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  20. McAlister, B., Finnie, J., Watt, M.P., and Blakeway, F. 2005. Use of the temporary immersion bioreactor system ($RITA^{\circledR}$) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell, Tissue and Organ Culture 81: 347-358. https://doi.org/10.1007/s11240-004-6658-x
  21. McComb, J.A., Bennett, I.J., and Tonkin, C. 1996. In vitro propagation of Eucalyptus species. In: Taji, A.; Williams, R., eds. Tissue culture of Australian plants. Armidale, NSW: University of New England, 112-156.
  22. Merchant, A., Richter, A., Popp, M., and Adams, M. 2006. Targeted metabolite profiling provides a functional link among Eucalyptus taxonomy, physiology and evolution. Phytochemistry 67: 403-408.
  23. Moon, H.K., Kim, J., Lee, H.S. and Kang H.D. 2003. Micropropagation via axillary bud induction of Eucalyptus pellita. Korean Journal of Plant Biotechnology 30: 269-273. https://doi.org/10.5010/JPB.2003.30.3.269
  24. Murali, T.P. and Duncan, E.J. 1995. The effects of in vitro gardening using triazoles on growth and acclimatization of banana. Scientia Horticulturae 64: 243-251. https://doi.org/10.1016/0304-4238(95)00848-9
  25. Nugent, G., Chandler, S.F., Phil, W., and Stevenson, T.W. 2001. Adventitious bud induction in Eucalyptus globulus Labill. In Vitro Cellular & Developmental Biology-Plant 37: 388-391. https://doi.org/10.1007/s11627-001-0068-0
  26. Paques, M. and Boxus, P.H. 1987. Vitrification: A phenomenon related to tissue water content. Acta Horticulturae 212: 245-252.
  27. Park, S.Y., Moon, H.K., Kim, Y.W., Kim, S.J., and Lee, J.S. 2008. Application of open-type liquid culture for largescale production of mature plus tree of Eucalyptus pellita. Journal of Korean Forestry Society. 97: 650-655.
  28. Paek, K.Y. and Han, B.H. 1989. Physiological, biochemical and morphological characteristics of vitrified shoot regenerated in vitro. Korean Society of Plant Tissue Culture 18: 151-162.
  29. Piao, X.C., Charkrabarty, D., Hahn, E.J., and Paek, K.Y. 2003. A simple method for mass production of potato microtubers using a bioreactor system. Current Science 8: 1129-1232.
  30. Phillips, I.D.I. 1964. Root-shoot hormone relation. Annals of Botany 28: 17-35.
  31. Prasad, V.S.S. and Gupta, E.S.D. 2006. In vitro shoot regeneration of gladiolus in semi-solid agar versus liquid cultures with support systems. Plant Cell, Tissue and Organ Culture 87: 263-271. https://doi.org/10.1007/s11240-006-9160-9
  32. Riek, J.D. 1995. Interaction between sucrose uptake and photosynthesis in micropropagated Rosa multiflora L. Ph.D. thesis. Gent University, Belgium.
  33. Schwambach, J., Fadanelli, C., and Fett-Neto, A.G. 2005. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globules. Tree Physiology 25: 487-494. https://doi.org/10.1093/treephys/25.4.487
  34. Shohael, A.M., Chakrabarty, D., Yu, K.W., Hahn, E.J., and Paek, K.Y. 2005. Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutherosides. Journal of Biotechnology 120: 228-236. https://doi.org/10.1016/j.jbiotec.2005.06.010
  35. Takayama, S. and Akita, M. 1994. The types of bioreactors used for shoots and embryos. Plant Cell, Tissue and Organ Culture 39: 147-156. https://doi.org/10.1007/BF00033922
  36. Tibok, A., Blackhall, N.W., Power, J.B., and Davey, M.R. 1995. Optimized plant regeneration from calls derived from seedling hypocotyls of Eucalyptus urophylla. Plant Science 110: 139-145. https://doi.org/10.1016/0168-9452(95)04188-Z
  37. Van Huylenbroeck, J.M., Piqueras, A., and Debergh, P.C. 2000. The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Science 155: 59-66. https://doi.org/10.1016/S0168-9452(00)00201-6
  38. Warrang, E., Lesney, M.S., and Rockwood, D.J. 1991. Nodule culture and regeneration of Eucalyptus grandis hybrids. Plant Cell Reports 9: 586-589.
  39. Yang, J.C., Chung, J.D., and Chen, Z.Z. 1995. Vegetative propagation of adult Eucalyptus grandis X urophylla and comparison of growth between micropropagated plantlets and rooted cuttings. Plant Cell Reports 15: 170-173.
  40. Zobayed, S.M. A., Afreen F., and Kozai, T. 2001. Physiology of Eucalyptus plantlets grown photoautotrophically in a scaled-up vessel. In Vitro Cellular & Developmental Biology-Plant 37: 807-813. https://doi.org/10.1007/s11627-001-0134-7
  41. Zobayed, S.M.A., Afreen, F., Xiao, Y., and Kozai, T. 2004. Recent advancement in research on photoautotrophic micropropagation using large culture vessels with forced ventilation. In Vitro Cellular & Developmental Biology- Plant 40: 450-458. https://doi.org/10.1079/IVP2004558