• Title/Summary/Keyword: biomedical

Search Result 13,315, Processing Time 0.038 seconds

Development and in Vivo Test of an Electrohydraulic Total Artificial Heart at the National Cardiovascular Center in Japan (일본 국립 순환기 센타형 전기유압식 인공심장의 개발과 동물실험)

  • 손영상
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 1998
  • The ultimate goal of total artificial heart is permanent substitute for a failed heart in a patient without any other therapeutic modality. Until now, infection has been the main problem related to the mechanical circulatory support system. The best way to solve this catastrophic complication and to improve the quality of life of TAH patients in terms of tethering must be implantation of TAH totally. The EH-TAH has been developed in NCVC from 1987 for this purpose. The system consists of an energy converter and pumps, which are designed to be placed in abdomen and pericardial space separately for a good anatomical fit. To evaluate the anatomical fit and hemodynamic performance of the EH-TAH, in vivo test was done. General condition of the animal and hemodynamic status had been stable until the TAH stopped on the 11th pumping day. The estimated cardiac output was about 7.7L/min. The values of mean aortic pressure, left and right atrial pressure were 93$\pm$10, 19$\pm$3 and 15$\pm$4 mmHg, respectively. The correlation coefficient between left and right atrial pressure was 0.96, which represents the dynamic function of the interatrial shunt in controlling left-right imbalance of cardiac output. During pumping days, the temperature on the surface of actuator had been maintained at 39.7$\pm$0.4$^{\circ}C$, less than 1$^{\circ}C$ higher than the rectal temperature. The TAH stopped on the 11th day due to mechanical problems. We concluded that the EH-TAH possessed satisfactory basic performance including anatomic fit and hemodynamic adequacy, although there were several mechanical problems to be solved yet.

  • PDF

Effect of Titanium Prosthesis on Computed Tomography Measurements of Bone Mineral Density

  • Han, S.M.;Zude Feng
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.177-182
    • /
    • 1998
  • This study investigated the effects of a titanium prosthesis, malalignment, field of view, and distal flare of titanium prosthesis on computed tomography( CT) measurements of home mineral density. Eight femora and eight tibiae from fresh male cadavers were used. Fifteen pieces of cancellous bone from the proximal tibiae were milled into rectangular parallelepipeds. Parallelepipeds and femors were scanned with and without titanium prosthesis when centered in the gantry of the CT scanner and malaligned, respectively. Image data were then reconstructed with field of view of 10 and 30 cm. Bone mineral density(BMD) values were obtained from CT images using C-MED software. The effects of titanium prosthesis, malalignmetn, and field of view were investigated. When bone was centered in the gantry of the CT scanner, the mean relative difference of BMD measurements caused by a titanium prosthesis was less than 1% for both cortical and cancellous bone. Field of view had negligible effect on BMD measurements as well. Malalignment and distal flare of prosthesis, however, caused a significant difference in BMD measurements(p<0.0001). The titanium prosthesis did not interfere with malalignment combining the existence of a titnium prosthesis on BMD measurements was significant.

  • PDF

Segmentation of Multispectral MRI Using Fuzzy Clustering (퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 step. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional(3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image is made up of applying scale space filtering to each 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram and searching graph structure. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with its initial centroid value as the outstanding clusters centroid value. The proposed cluster's centroid accurately. And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the method of single spectral analysis.

  • PDF

Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions (맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향)

  • 최주환;이종선;김찬중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.363-372
    • /
    • 2000
  • The present study investigated flow dynamics of a straight elastic blood vessel under sinusoidal flow conditions in order to understand influence of wall motion and impedance phase angle(time delay between pressure and flow waveforms) on wall shear stress distribution using computational fluid dynamics. For the straight elastic tube model considered in the our method of computation. The results showed that wall motion induced additional terms in the axial velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. Te trend of the changes was very different depending on the impedance phase angle. As the wall shear stress increased. As the phase angle was reduced from 0$^{\circ}$to -90$^{\circ}$for ${\pm}$4% wall motion case, the mean wall shear stress decreased by 10.5% and the amplitude of wasll shear stress increased by 17.5%. Therefore, for hypertensive patients vulnerable state to atherosclerosis according to low and oscillatory shear stress theory.

  • PDF

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF

Hierarchical Non-Rigid Registration by Bodily Tissue-based Segmentation : Application to the Visible Human Cross-sectional Color Images and CT Legs Images (조직 기반 계층적 non-rigid 정합: Visible Human 컬러 단면 영상과 CT 다리 영상에 적용)

  • Kim, Gye-Hyun;Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Non-rigid registration between different modality images with shape deformation can be used to diagnosis and study for inter-patient image registration, longitudinal intra-patient registration, and registration between a patient image and an atlas image. This paper proposes a hierarchical registration method using bodily tissue based segmentation for registration between color images and CT images of the Visible Human leg areas. The cross-sectional color images and the axial CT images are segmented into three distinctive bodily tissue regions, respectively: fat, muscle, and bone. Each region is separately registered hierarchically. Bounding boxes containing bodily tissue regions in different modalities are initially registered. Then, boundaries of the regions are globally registered within range of searching space. Local boundary segments of the regions are further registered for non-rigid registration of the sampled boundary points. Non-rigid registration parameters for the un-sampled points are interpolated linearly. Such hierarchical approach enables the method to register images efficiently. Moreover, registration of visibly distinct bodily tissue regions provides accurate and robust result in region boundaries and inside the regions.

Analysis of the Contact Pressure Distribution and Kinetics of Knee Implant Using the Simulator (Simulator를 이용한 인공무릎관절 접촉면의 압력분포 및 운동성 분석)

  • 이문규;김종민;김동민;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.363-367
    • /
    • 2003
  • Contact area and pressure are important factors which directly influence a life of knee implants. Since implant's mechanical functions should be experimentally evaluated for clinical use, many studies using a knee simulator and a pressure sensor system have been conducted. However it has not been reported that the contact pressure's distribution of a knee implant motion was estimated in real-time during a gate cycle. Therefore. the objective of this study was to analyze the contact pressure distribution for the motion of a joint using the knee simulator and I-scan sensor system. For this purpose, we developed a force-controlled dynamic knee simulator to evaluate the mechanical performance of artificial knee joint. This simulator includes a function of a soft tissue and has a 4-degree-of-freedom to represent an axial compressive load and a flexion angle. As axial compressive force and a flexion angle of the femoral component can be controlled by PC program. The pressure is also measured from I-scan system and simulator to visualize the pressure distribution on the joint contact surfaces under loading condition during walking cycle. The compressive loading curve was the major cause for the contact pressure distribution and its center move in a cycle as to a flexion angie. In conclusion, this system can be used to evaluate to the geometric interaction of femoral and tibial design due to a measured mechanical function such as a contact pressure, contact area and a motion of a loading center.

Study on the Modeling Technique for Prediction about Pressure Drop of an Intravenous Lung Assist Device (혈관 내 폐 보조장치의 압력손실 예측을 위한 모델링기법에 관한 연구)

  • 김기범;권대규;정경락
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, the correlation of Pressure drop about the Newtonian and non-Newtonian fluid was investigated experimentally for vibrating intravascular lung assist device (VIVLAD) and we determined correlation equation to make a prediction about Pressure drop for designing VIVLAD. Design conditions to predict the pressure drop of the modules were studied through an experimental modeling before inserting the artificial lung assist device into as venous. Experiments were performed by distilled water, glycerol/water mixed solution(40% glycerol) of Newtonian fluids. and the bovine blood of non-Newtonian fluids. These fluids were flowed outside and parallel of hollow fiber membranes. Also we measured pressure drop according to the number of the fiber membranes which ware inserted into the inside diameter of shell of 3 cm, and developed the prediction equations by curve fitting method based on correlation between the experimental pressure drop and the frontal area or the packing density of device. The result showed that the Pressure drop and the friction factor of the water/glycerol mixed solution were similar to that of bovine blood. It was showed that the water/glycerol mixed solution (40% glycerol) could be used for measuring the pressure drop and the friction factor instead of the bovine blood. Also, we could estimate the prediction equation of pressure drop and friction factor as the function of Packing density at the number of hollow fibers. We obtained the reliance of the prediction equations because the pressure drop and the friction factor measured from the experiments were similar to that from the prediction equation. These results may be used to further usefulness for the design of VIVLAD.

The Development of 63nm Diode Laser System for Photodynamic Therapy of Cancer (광역학적 암치료를 위한 635nm 다이오드 레이저 시스템 개발)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.319-328
    • /
    • 2003
  • The purpose of this paper is to develop a medical laser system using the semiconductor diode laser in order to photodynamic cancel therapy as a light source. The ideal light source for photodynamic therapy would be a homogeneous nondiverging light with variable spot size and specific wavelength with stability. After due consideration in this point, in this paper, we used a diode laser resonator of 635nm wavelength. The development laser system have a statistical laser out beam with accuracy control using the constant current control of method and clinic-friendly with compact. In order to protect the diode resonator from the over-current, the rush-current and electrical fault, we specially designed. The most importance therapeutic factor are the radiation mode for cancer therapy. So we developed the radiation mode of CW(Continuous Wave), long pulse, short pulse, and burst pulse and can adjust the exposure time from several milli-second to several minute. The experimental result shows that laser beam power was increased linear from 10mW to 300mW according to the increasing input current and the increasing exposure time. The developed new compact diode laser system have a stability of output power and specific wavelength with easy control and transportable for many applications of PDT.

Availability of CLSI method and MicroScan MICroSTREP plus panel for Antimicrobial Susceptibility Testing of α-hemolytic streptococci Isolated from Patients (환자(患者)에서 분리한 연쇄상구균(連鎖狀球菌)에 대한 CLSI방법(方法)과 MicroScan MICroSTREP plus panel의 항균제(抗菌劑) 감수성(感受性) 검사(檢査)의 유용성(有用性) 고찰(考察))

  • Kim, Sang-Ha;Kim, Sang-Ha;Kim, Young-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4951-4958
    • /
    • 2011
  • The purpose of this study was availability for the classical test method. The test were called CLSI(Clinical and Laboratory Standards Institute) that was disk diffusion method, the newly designed E-test(made use disk diffusion method) can estimate the MIC and modified broth microdilution method that was standardized. Those tests were observed by MicroScan MicroSTREP plus panel. Target strains were 53 strains of S.pneumoniae and 51 strains of ${\alpha}$-hemolytic streptococci which were separated from the inpatient in university hospital for 6 months from February to August, 2009. The 9 antimicrobial agent of target evaluation were cefotaxime, chloramphenicol, clindamycin, erythromycin, levofloxacin, penicillin, tetracycline, trimethoprim/sulfamethoxazole, and vancomycin. researched comparative analysis both S.pneumoniae and ${\alpha}$-hemolytic streptococci. The result of the high concordance rates in ${\alpha}$-hemolytic streptococci was recognized formally in clinical microbiology laboratory.