• Title/Summary/Keyword: biology major

검색결과 2,042건 처리시간 0.027초

7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

  • Jeong-Yeon Seo;Tae-Hyeon Kim;Kyeong-Rok Kang;HyangI Lim;Moon-Chang Choi;Do Kyung Kim;Hong Sung Chun;Heung-Joong Kim;Sun-Kyoung Yu;Jae-Sung Kim
    • Molecules and Cells
    • /
    • 제46권4호
    • /
    • pp.245-255
    • /
    • 2023
  • This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase-dependent chondrocyte death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocyte death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.

Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways

  • Xianyu Piao;Jung-Woo Kim;Moonjung Hyun;Zhao Wang;Suk-Gyun Park;In A Cho;Je-Hwang Ryu;Bin-Na Lee;Ju Han Song;Jeong-Tae Koh
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.545-550
    • /
    • 2023
  • Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomy-induced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis.

님, 제충국, 고삼 추출물의 응애류 방제와 천적에 미치는 영향에 대한 고찰 (A Review on Control of Mites Using Neem, Chrysanthemum, Shrubby Sophora Extracts and their Effects on Natural Enemies)

  • 김효정;김도익;한송희;김영철
    • 한국응용곤충학회지
    • /
    • 제62권3호
    • /
    • pp.193-205
    • /
    • 2023
  • 식물추출물은 작물 해충에 대해 기피, 섭식저해, 해충 효소활성억제 활성을 가지고 있어 해충 방제제로 활용되고 있다. 응애는 원예작물에 심각한 피해를 주고 있고, 실제 포장에서 방제 방법도 화학적 살비제를 이용하고 있지만 효과적이지 않다. 포장에서 응애 방제가 어려운 이유는 짧은 세대수, 많은 산란수와 번식력 등으로 인해 약제저항성 개체가 증가하는 것이 원인이다. 친환경자재로 님, 멀구슬, 제충국, 고삼 추출물을 함유한 제품들이 개발되고 포장에서 살비제로 활용되고 있다. 이들 추출물은 천적에 대한 낮은 독성으로 식물추출물과 천적을 동시에 사용하여 응애의 종합 방제에 활용될 수 있는 장점이 있다. 많은 이들 식물추출물의 해충 방제에 대한 리뷰가 있지만, 포장에서 효율적인 이들 추출물의 종합적인 측면에서 활용이나, 응애별 살충 스펙트럼, 반수 치사농도와 치사시간, 살충기작별로 응애 생활사에 영향을 미치는 종합적인 리뷰는 제한적이다. 본 리뷰는 이들 식물추출물을 포장에서 효율적으로 활용 가능한 식물추출물별 사용 가능 시기, 방법, 응애 생활사, 천적 활용 등의 종합적인 응애 방제를 목표로 하였다.

Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury

  • Mi Jeong Heo;Ji Ho Suh;Kyle L. Poulsen;Cynthia Ju;Kang Ho Kim
    • Molecules and Cells
    • /
    • 제46권9호
    • /
    • pp.527-534
    • /
    • 2023
  • Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.

Copper Oxide Spike Grids for Enhanced Solution Transfer in Cryogenic Electron Microscopy

  • Dukwon Lee;Hansol, Lee;Jinwook Lee;Soung-Hun Roh;Nam-Chul Ha
    • Molecules and Cells
    • /
    • 제46권9호
    • /
    • pp.538-544
    • /
    • 2023
  • The formation of uniform vitreous ice is a crucial step in the preparation of samples for cryogenic electron microscopy (cryo-EM). Despite the rapid technological progress in EM, controlling the thickness of vitreous ice on sample grids with reproducibility remains a major obstacle to obtaining high-quality data in cryo-EM imaging. The commonly employed classical blotting process faces the problem of excess water that cannot be absorbed by the filter paper, resulting in the formation of thick and heterogeneous ice. In this study, we propose a novel approach that combines the recently developed nanowire self-wicking technique with the classical blotting method to effectively control the thickness and homogeneity of vitrified ice. With simple procedures, we generated a copper oxide spike (COS) grid by inducing COSs on commercially available copper grids, which can effectively remove excess water during the blotting procedure without damaging the holey carbon membrane. The ice thickness could be controlled with good reproducibility compared to non-oxidized grids. Incorporated into other EM techniques, our new modification method is an effective option for obtaining high-quality data during cryo-EM imaging.

Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages

  • Rungthip Thongboontho;Kanoktip Petcharat;Narongsuk Munkong;Chakkraphong Khonthun;Atirada Boondech;Kanokkarn Phromnoi;Arthid Thim-uam
    • Nutrition Research and Practice
    • /
    • 제17권5호
    • /
    • pp.827-843
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS: The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS: Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p2phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS: Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.

한국산 오디 품종별 안토시아닌 배당체 성분 분석 (Analysis of Anthocyanin Glycosides in Korean Mulberry Fruit Cultivars)

  • 김소아;권령하;김주형;라혜민;이지혜;조수묵;김헌웅
    • 한국식품영양학회지
    • /
    • 제36권6호
    • /
    • pp.543-550
    • /
    • 2023
  • Mulberry fruit is a superior source of polyphenols, especially anthocyanin, and has a long history of use as an edible fruit and traditional medicine. The anthocyanin composition of mulberry fruit from 15 Korean cultivars was analyzed by ultra-performance liquid chromatography diode array detector with quadrupole time of flight/mass spectrometry (UPLC-DAD-QToF/MS) based on a cyanin internal standard. The four glycosides were identified by comparison with authentic standards and published reports. The major anthocyanin was cyanidin 3-O-glucoside (71.7%), followed by cyanidin 3-O-rutinoside (26.6%). The minor components (total of 1.7%) were pelargonidin 3-O-glucoside and pelargonidin 3-O-rutinoside. The total anthocyanin content (mg/100 g, dry weight) of mulberry fruit varied by cultivar and ranged from 471.5±4.0 (Su Hong) to 4,700.2±54.0 (Gwa Sang2). Among the 15 cultivars examined, Gwa Sang2 showed the highest level of cyanidin 3-O-glucoside (3,133.4±32.6), which was 9-fold higher than that of Su Hong (351.5±3.4). In conclusion, anthocyanin profiles, including pelargonidin 3-O-glucoside and pelargonidin 3-O-rutinoside, were reported for the first time from 15 Korean mulberry fruit cultivars. The results will contribute valuable information on pharmaceutical properties, breeding superior mulberry cultivars, and food industries.

A comparison study of pathological features and drug efficacy between Drosophila models of C9orf72 ALS/FTD

  • Davin Lee;Hae Chan Jeong;Seung Yeol Kim;Jin Yong Chung;Seok Hwan Cho;Kyoung Ah Kim;Jae Ho Cho;Byung Su Ko;In Jun Cha;Chang Geon Chung;Eun Seon Kim;Sung Bae Lee
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100005.1-100005.15
    • /
    • 2024
  • Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.

염증성 질환에 대한 Crocin의 치료 효과 (Therapeutic Effect of Crocin in Inflammatory Diseases)

  • 김영희
    • 생명과학회지
    • /
    • 제34권2호
    • /
    • pp.138-144
    • /
    • 2024
  • Crocin은 여러 가지 요리에 향미와 색깔을 주는 치자 열매나 사프란에 함유되어 있는 적노란색의 수용성 색소이다. 사프란과 치자는 전통의학 분야에서 부종, 해열, 해독 작용이 있어 바이러스성 간염, 식도염, 관상동맥심장병, 신경쇠약, 불면증, 퇴행성 신경질환, 호흡기 질환, 비뇨기 질환 등을 치료하는데 사용되어 왔다. Crocin (C44H64O24)은 카로테노이드의 복합체로, dicarboxylic acid crocetin과 disaccharide gentiobiose로 이루어진 diester이다. Crocin은 혈액학적인, 병리학적인 독성이나 유전독성이 없다. 현재까지 수많은 생체 내 및 생체 외 연구들을 통해 Crocin의 생물학적인 약리작용이 밝혀지고 있다. 본 총설에서는 염증성 장질환, 위염, 천식, 동맥경화, 류머티스 관절염, 다발성 경화증, 당뇨, 알츠하이머병, 파킨슨병, 우울증 등의 염증 관련 질환에서 Crocin의 보호 효과를 요약한다. Crocin은 다양한 작용 기전을 통해 항염, 항산화, 세포 자살 방지 기능을 함으로써 이들 질환을 개선하는 것으로 추론된다.