DOI QR코드

DOI QR Code

Analysis of Anthocyanin Glycosides in Korean Mulberry Fruit Cultivars

한국산 오디 품종별 안토시아닌 배당체 성분 분석

  • 김소아 (국립농업과학원 농식품자원부) ;
  • 권령하 (국립농업과학원 농식품자원부) ;
  • 김주형 (국립농업과학원 농식품자원부) ;
  • 라혜민 (국립농업과학원 농식품자원부) ;
  • 이지혜 (국립농업과학원 농업생물부) ;
  • 조수묵 (국립농업과학원 농식품자원부 ) ;
  • 김헌웅 (국립농업과학원 농식품자원부 )
  • Received : 2023.11.10
  • Accepted : 2023.12.07
  • Published : 2023.12.31

Abstract

Mulberry fruit is a superior source of polyphenols, especially anthocyanin, and has a long history of use as an edible fruit and traditional medicine. The anthocyanin composition of mulberry fruit from 15 Korean cultivars was analyzed by ultra-performance liquid chromatography diode array detector with quadrupole time of flight/mass spectrometry (UPLC-DAD-QToF/MS) based on a cyanin internal standard. The four glycosides were identified by comparison with authentic standards and published reports. The major anthocyanin was cyanidin 3-O-glucoside (71.7%), followed by cyanidin 3-O-rutinoside (26.6%). The minor components (total of 1.7%) were pelargonidin 3-O-glucoside and pelargonidin 3-O-rutinoside. The total anthocyanin content (mg/100 g, dry weight) of mulberry fruit varied by cultivar and ranged from 471.5±4.0 (Su Hong) to 4,700.2±54.0 (Gwa Sang2). Among the 15 cultivars examined, Gwa Sang2 showed the highest level of cyanidin 3-O-glucoside (3,133.4±32.6), which was 9-fold higher than that of Su Hong (351.5±3.4). In conclusion, anthocyanin profiles, including pelargonidin 3-O-glucoside and pelargonidin 3-O-rutinoside, were reported for the first time from 15 Korean mulberry fruit cultivars. The results will contribute valuable information on pharmaceutical properties, breeding superior mulberry cultivars, and food industries.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원의 농업과학기반기술 연구사업(과제번호: PJ016757022023) 전문연구원 및 학·연협동과정 지원사업에 의해 수행한 결과의 일부이며, 지원에 감사드립니다.

References

  1. Aljane F, Sdiri N. 2016. Morphological, phytochemical and antioxidant characteristics of white (Morus alba L.), red (Morus rubra L.) and black (Morus nigra L.) mulberry fruits grown in arid regions of Tunisia. J New Sci 35:1940-1947
  2. Bae HS, Kim HJ, Kang JH, Kudo R, Hosoya T, Kumazawa S, Jun M, Kim OY, Ahn MR. 2015. Anthocyanin profile and antioxidant activity of various berries cultivated in Korea. Nat Prod Commun 10:963-968 https://doi.org/10.1177/1934578X1501000643
  3. Bae SH, Suh HJ. 2007. Antioxidant activities of five different mulberry cultivars in Korea. LWT Food Sci Technol 40:955-962 https://doi.org/10.1016/j.lwt.2006.06.007
  4. Bao T, Xu Y, Gowd V, Zhao J, Xie J, Liang W, Chen W. 2016. Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. J Funct Foods 25:537-547 https://doi.org/10.1016/j.jff.2016.07.001
  5. Bhuiyan MIH, Kim HB, Kim SY, Cho KO. 2011. The neuroprotective potential of cyanidin-3-glucoside fraction extracted from mulberry following oxygen-glucose deprivation. Korean J Physiol Pharmacol 15:353-361 https://doi.org/10.4196/kjpp.2011.15.6.353
  6. Cerezo AB, Cuevas E, Winterhalter P, Garcia-Parrilla MC, Troncoso AM. 2010. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chem 123:574-582 https://doi.org/10.1016/j.foodchem.2010.04.073
  7. Chan KC, Huang HP, Ho HH, Huang CN, Lin MC, Wang CJ. 2015. Mulberry polyphenols induce cell cycle arrest of vascular smooth muscle cells by inducing NO production and activating AMPK and p53. J Funct Foods 15:604-613 https://doi.org/10.1016/j.jff.2015.03.033
  8. Chen C, Mohamad Razali UH, Saikim FH, Mahyudin A, Mohd Noor NQI. 2021. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods 10:689
  9. Chen H, Chen J, Yang H, Chen W, Gao H, Lu W. 2016. Variation in total anthocyanin, phenolic contents, antioxidant enzyme and antioxidant capacity among different mulberry (Morus sp.) cultivars in China. Sci Hortic 213:186-192 https://doi.org/10.1016/j.scienta.2016.10.036
  10. Cho E, Chung EY, Jang HY, Hong OY, Chae HS, Jeong YJ, Kim SY, Kim BS, Yoo DJ, Kim JS, Park KH. 2017. Anti-cancer effect of cyanidin-3-glucoside from mulberry via caspase-3 cleavage and DNA fragmentation in vitroand in vivo. Anticancer Agents Med Chem 17:1519-1525 https://doi.org/10.2174/1871520617666170327152026
  11. Choi IS, Moon YS, Kwak EJ. 2012. Composition of resveratrol and other bioactive compounds, and antioxidant activities in different mulberry cultivars. Korean J Hortic Sci Technol 30:301-307 https://doi.org/10.7235/hort.2012.12040
  12. Choi SJ, Jeon H, Lee CU, Yoon SH, Bae SK, Chin YW, Yoon KD. 2015b. Isolation and development of quantification method for cyanidin-3-glucoside and cyanidin-3-rutinoside in mulberry fruit by high-performance countercurrent chromatography and high-performance liquid chromatography. Nat Prod Sci 21:20-24 https://doi.org/10.1002/jssc.201500076
  13. Choi SW, Lee YJ, Ha SB, Jeon YH, Lee DH. 2015a. Evaluation of biological activity and analysis of functional constituents from different parts of mulberry (Morus alba L.) tree. J Korean Soc Food Sci Nutr 44:823-831 https://doi.org/10.3746/jkfn.2015.44.6.823
  14. Choung MG. 2004. Analysis of anthocyanins. Korean J Crop Sci 49:55-67
  15. Hassimotto NMA, Moreira V, Nascimento NG, Souto PCMC, Teixeira C, Lajolo FM. 2013. Inhibition of carrageenan-induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanidin-3-glucoside. BioMed Res Int 2013:146716
  16. Jang M, Kim JY, Kim GC, Kang HJ, Hwang IG. 2022. Anthocyanin content in mulberry according to cultivars and growing region. J Korean Soc Food Sci Nutr 51:289-294 https://doi.org/10.3746/jkfn.2022.51.3.289
  17. Jeong IH, Oh MS, Jeon JS, Kim HT, Hong SR, Park KH, Yoon MH. 2017. A comparative study on anthocyanin and polyphenol contents in colored agricultural products. J Food Hyg Saf 32:371-380 https://doi.org/10.13103/JFHS.2017.32.5.371
  18. Jiang Y, Nie WJ. 2015. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem 174:460-466 https://doi.org/10.1016/j.foodchem.2014.11.083
  19. Jin Q, Yang J, Ma L, Cai J, Li J. 2015. Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus Morus) cultivars from China. J Food Sci 80:C2440-C2451 https://doi.org/10.1111/1750-3841.13099
  20. Jung S, Lee MS, Choi AJ, Kim CT, Kim Y. 2019. Anti-inflammatory effects of high hydrostatic pressure extract of mulberry (Morus alba) fruit on LPS-stimulated RAW264.7 cells. Molecules 24:1425
  21. Kamiloglu S, Serali O, Unal N, Capanoglu E. 2013. Antioxidant activity and polyphenol composition of black mulberry (Morus nigra L.) products. J Berry Res 3:41-51 https://doi.org/10.3233/JBR-130045
  22. Khoo HE, Azlan A, Tang ST, Lim SM. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779
  23. Kim AJ, Lee JA, Kim MJ, Kang MS, Kim HB, Lim JD. 2016. Quality characteristics of sauce for meat prepared with mulberry leaf powder and mulberry fruit powder. Korean J Food Nutr 29:513-520 https://doi.org/10.9799/ksfan.2016.29.4.513
  24. Kim EO, Lee YJ, Leem HH, Seo IH, Yu MH, Kang DH, Choi SW. 2010. Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberrys from seven different Morus alba L. cultivars. J Korean Soc Food Sci Nutr 39:1467-1475 https://doi.org/10.3746/jkfn.2010.39.10.1467
  25. Kim HB, Kim AJ, Kim SY. 2003. The analysis of functional materials in mulberry fruit and food product development trends. Food Sci Ind 36:49-60
  26. Kim HB, Kwon OC, Kweon H, Jo YY, Ju WT, Lee JH, Kim YS. 2020. Effect of postharvest conditions on the characteristics of mulberries harvested from various mulberry cultivar Morus alba. Int J Ind Entomol 40:33-40
  27. Kim HB. 2003. Quantification of cyanidin-3-glucoside (C3G) in mulberry fruits and grapes. Korean J Seric Sci 45:1-5
  28. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS, Kim JH, Park HJ, Lee DJ. 2012. Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130:966-972 https://doi.org/10.1016/j.foodchem.2011.08.031
  29. Kim HW, Lee SH, Asamenew G, Lee MK, Lee S, Park JJ, Choi Y, Lee SH. 2019b. Study on phenolic compounds in lettuce samples cultivated from Korea using UPLC-DAD-QToF/MS. Korean J Food Nutr 32:717-729
  30. Kim HY, Lee JY, Hwang IG, Han HM, Park BR, Han GJ, Park JT. 2015. Analysis of functional constituents of mulberries (Morus alba L.) cultivated in a greenhouse and open field during maturation. J Korean Soc Food Sci Nutr 44:1588-1593 https://doi.org/10.3746/jkfn.2015.44.10.1588
  31. Kim I, Lee J. 2017. Comparison of different extraction solvents and sonication times for characterization of antioxidant activity and polyphenol composition in mulberry (Morus alba L.). Appl Biol Chem 60:509-517 https://doi.org/10.1007/s13765-017-0303-y
  32. Kim I, Lee J. 2020. Variations in anthocyanin profiles and antioxidant activity of 12 genotypes of mulberry (Morus spp.) fruits and their changes during processing. Antioxidants 9:242
  33. Kim MJ, Lee JH, Pyo JS, Kim HK. 2019a. Quantitative analysis of cyanidin-3-O-rutinoside and quercetin-3-O-rutinoside from extracts of Morus alba fruit. Korean J Pharmacogn 50:53-58
  34. Kim SY, Park KJ, Lee WC. 1998. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Korean J Med Crop Sci 6:204-209
  35. Krishna H, Singh D, Singh RS, Kumar L, Sharma BD, Saroj PL. 2020. Morphological and antioxidant characteristics of mulberry (Morus spp.) genotypes. J Saudi Soc Agric Sci 19:136-145 https://doi.org/10.1016/j.jssas.2018.08.002
  36. Krishna PGA, Sivakumar TR, Jin C, Li SH, Weng YJ, Yin J, Jia JQ, Wang CY, Gui ZZ. 2018. Antioxidant and hemolysis protective effects of polyphenol-rich extract from mulberry fruits. Pharmacogn Mag 14:103-109 https://doi.org/10.4103/pm.pm_491_16
  37. Lee SH, Jeong E, Paik SS, Jeon JH, Jung SW, Kim HB, Kim M, Chun MH, Kim IB. 2014. Cyanidin-3-glucoside extracted from mulberry fruit can reduce N-methyl-N-nitrosourea-induced retinal degeneration in rats. Curr Eye Res 39:79-87 https://doi.org/10.3109/02713683.2013.825275
  38. Lee Y, Hwang KT. 2017. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Sci Hortic 217:189-196 https://doi.org/10.1016/j.scienta.2017.01.042
  39. Lee Y, Lee JH, Kim SD, Chang MS, Jo IS, Kim SJ, Hwang KT, Jo HB, Kim JH. 2015. Chemical composition, functional constituents, and antioxidant activities of berry fruits produced in Korea. J Korean Soc Food Sci Nutr 44:1295-1303 https://doi.org/10.3746/jkfn.2015.44.9.1295
  40. Lee YJ, Choi SW. 2013. Physicochemical characteristics and analysis of functional constituents of four different mulberry (Morus alba L.) fruit juices. J East Asian Soc Diet Life 23:768-777
  41. Li Z, Liu Y, Xiang J, Wang C, Johnson JB, Beta T. 2023. Diverse polyphenol components contribute to antioxidant activity and hypoglycemic potential of mulberry varieties. LWT 173:114308
  42. Liang L, Wu X, Zhu M, Zhao W, Li F, Zou Y, Yang L. 2012. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn Mag 8:215-224 https://doi.org/10.4103/0973-1296.99287
  43. Mehmood Abbasi A, Shah MH, Guo X, Khan N. 2016. Comparison of nutritional value, antioxidant potential, and risk assessment of the mulberry (Morus) fruits. Int J Fruit Sci 16:113-134 https://doi.org/10.1080/15538362.2015.1061960
  44. Negro C, Aprile A, De Bellis L, Miceli A. 2019. Nutraceutical properties of mulberries grown in southern Italy (Apulia). Antioxidants 8:223
  45. Ozgen M, Serce S, Kaya C. 2009. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci Hortic 119:275-279 https://doi.org/10.1016/j.scienta.2008.08.007
  46. Pawlowska AM, Oleszek W, Braca A. 2008. Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J Agric Food Chem 56:3377-3380 https://doi.org/10.1021/jf703709r
  47. Qin C, Li Y, Niu W, Ding Y, Zhang R, Shang X. 2010. Analysis and characterisation of anthocyanins in mulberry fruit. Czech J Food Sci 28:117-126 https://doi.org/10.17221/228/2008-CJFS
  48. Stefanut MN, Cata A, Pop R, Mosoarca C, Zamfir AD. 2011. Anthocyanins HPLC-DAD and MS characterization, total phenolics, and antioxidant activity of some berries extracts. Anal Lett 44:2843-2855 https://doi.org/10.1080/00032719.2011.582550
  49. Sun Z, Zhou Y, Zhu W, Yin Y. 2023. Assessment of the fruit chemical characteristics and antioxidant activity of different mulberry cultivars (Morus spp.) in semi-arid, sandy regions of China. Foods 12:3495
  50. Sung GB, Kim YS, Kim KY, Ji SD, Kim NS. 2015. Studies on mulberry tree years and mulberry fruit yield and mulberry popcorn disease and sales price. J Seric Entomol Sci 53:19-28 https://doi.org/10.7852/jses.2015.53.1.19
  51. Turgut NH, Mert DG, Kara H, Egilmez HR, Arslanbas E, Tepe B, Gungor H, Yilmaz N, Tuncel NB. 2016. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D-galactose-induced aging mice. Pharm Biol 54:1052-1064 https://doi.org/10.3109/13880209.2015.1101476
  52. Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M. 2015. Anthocyanin composition of different wild and cultivated berry species. LWT Food Sci Technol 60:509-517 https://doi.org/10.1016/j.lwt.2014.08.033
  53. Xu Y, Hu D, Li Y, Sun C, Chen W. 2018. An effective method for preparation of high-purity pelargonidin-3-O-glucoside from strawberry and its protective effect on cellular oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 1072:211-220 https://doi.org/10.1016/j.jchromb.2017.11.025
  54. Xu Y, Xie L, Xie J, Liu Y, Chen W. 2019. Pelargonidin-3-O-rutinoside as a novel α-glucosidase inhibitor for improving postprandial hyperglycemia. Chem Commun 55:39-42 https://doi.org/10.1039/C8CC07985D
  55. Yan F, Dai G, Zheng X. 2016. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 36:68-80 https://doi.org/10.1016/j.jnutbio.2016.07.004
  56. Yan F, Zheng X. 2017. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. J Funct Foods 30:270-281 https://doi.org/10.1016/j.jff.2017.01.027
  57. Yang J, Wen H, Zhang L, Zhang X, Fu Z, Li J. 2017. The influence of ripening stage and region on the chemical compounds in mulberry fruits (Morus atropurpurea Roxb.) based on UPLC-QTOF-MS. Food Res Int 100:159-165 https://doi.org/10.1016/j.foodres.2017.08.023
  58. Yang JW, Choi IS. 2017. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, bokbunja, (Rubus coreanus Miquel) with those of six other berries. CyTA J Food 15:110-117 https://doi.org/10.1080/19476337.2016.1219390
  59. Yuan Q, Zhao L. 2017. The mulberry (Morus alba L.) fruit-A review of characteristic components and health benefits. J Agric Food Chem 65:10383-10394 https://doi.org/10.1021/acs.jafc.7b03614
  60. Zhang H, Ma ZF, Luo X, Li X. 2018. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidants 7:69
  61. Zhang W, He J, Pan Q, Han F, Duan C. 2011. Separation and character analysis of anthocyanins from mulberry (Morus alba L.) pomace. Czech J Food Sci 29:268-276 https://doi.org/10.17221/124/2008-CJFS