• Title/Summary/Keyword: biodegradation,

Search Result 1,039, Processing Time 0.029 seconds

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.

Fungal Metabolism of Environmentally Persistent Compounds: Substrate Recognition and Metabolic Response

  • Wariishi, Hiroyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.422-430
    • /
    • 2000
  • Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.

  • PDF

The Effect of Nutrient Amendments on Biodegradability of Kerosene and Growth of Kerosene-degrading Microorganisms (영양원 변화가 Kerosene 분해율 및 분해균주 성장에 미치는 영향)

  • Chung, Kyu-Hyuck
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 1999
  • Bioremediation is the technology to harness nature's biodegradative capabilities to remove or detoxify pollutions that threaten public health as environmental contaminants. Composting may become one of major bioremediation technologies for treating soils contaminated with petroleum if the fate of contaminants during composting is better understood Most composting research of petroleum was primarily focused on removing contaminant by optimizing composting conditions. Accordingly, laboratory feasibility studies may be useful to establish a realistic basis in co-composting complex substrate such as petroleum hydrocarbons. The purpose of this study was to assess the optimal conditions of kerosene biodegradation following supplementation with nutrient amendments under simulated composting conditions. Although it increased the growth of bacterial consortium, addition of co-substrates 0.5%(w/v) such as acetic acid, citric acid, glucose, and malic acid was not beneficial. Combination of nitrogen and phosphorous source enhanced kerosene biodegradation and reduced VOC evolution. These results showed that kerosene was able to utilize in bioremediation technology.

  • PDF

A study on Anaerobic Biodegradation of Dichlorophenol (Dichlorophenol의 혐기성 분해에 관한 연구)

  • Park, Ju Seuk;Jeon, Yeon Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.127-135
    • /
    • 1995
  • The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.

  • PDF

Enhanced Degradation of Quinoline by Immobilized Bacillus Brevis (고정화된 Bacillus Brevis에 의한 큐놀린 분해의 증가)

  • S., Balasubramaniyan;M., Swaminathan
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Biodegradation of Quinoline by free and immobilized Bacillus brevis has been investigated. The rate of quinoline degradation by immobilized Bacillus brevis on coconut shell carbon is faster than the rate by the microorganism immobilized on foam pieces and free cells. A complete removal of 100 ppm of Quinoline in the sample was achieved at a hydraulic retention time of 20 hours with the biocatalyst prepared by immobilizing Bacillus brevis onto coconut shell carbon. The biocatalyst had a reasonable shelf life and desirable recycle capacity.

Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium (고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF

지하수 모니터링을 통한 오염물질(TEX)의 자연저감능 평가

  • Lee, Min-Hyo;Yoon, Jeong-Gi;Kim, Hyeok;Kim, Mun-Su;Lee, Gil-Cheol;Lee, Seok-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.179-182
    • /
    • 2002
  • The objective of this study was to evaluate petroleum hydrocarbon degradation processes governing natural attenuation at tile contaminated site and accomplished through conducting on investigation of degradation rate, capacity, and mechanism of the monitored natural attenuation. The monitoring results of the three years indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than these in the none-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential and a neutral pH in the contaminated groundwater, suggesting that biodegradation of TEX is the major on-going process in the contaminated area. However, reduction of TEX in the groundwater was not only biodegradation but also dilution and reaeration during infiltration of uncotaminated surface and groudwater.

  • PDF