• Title/Summary/Keyword: biocompatible materials

Search Result 202, Processing Time 0.025 seconds

Biocompatible Material Design Minimizing Hypertrophic Injury and Treatment Effects using a Mini-pig (비대성 흉터를 최소화하는 생체적합성 재료설계와 미니돼지에 대한 치료 효과)

  • Kim, Yong-Hwan;Kim, Jong-Woo;Jin, Seong-Hun;Kim, I-Su;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.95-100
    • /
    • 2017
  • Recently, biomedical-grade texture material gauze has often been used to treat wounds. At this time, it is difficult to remove scratches and pushed gauze; if you remove it with force, the tissue may separate and bleeding may occur again. In this study, we studied a method to apply medical-grade silicone material. Similar to the research result that hypertrophic wounds reduce the thickness of scar marks. Through mini-pig experiments, we evaluated the effects on scar treatment. The test results showed that the silicone cover layer applied to the wound site had a sealing effect on the wound area, skin temperature, and histopathological examination. In conclusion, gel treatment utilizing a biocompatible substance had the effect of minimizing hypertrophic scars.

Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (IONs)

  • Ebrahiminezhad, Alireza;Ghasemi, Younes;Rasoul-Amini, Sara;Barar, Jaleh;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3957-3962
    • /
    • 2012
  • Iron-oxide nanoparticles (IONs) with biocompatible coatings are the only nanostructural materials which have been approved by the FDA for clinical use. Common biocompatible coatings such as hydrocarbons, polymers, and silica have profound influences on critical characteristics of IONs. Recently, amino acids were introduced as a novel biocompatible coating. In the present study, the effects of amino acids on IONs synthesis and characteristics have been evaluated. Magnetite nanoparticles with L-arginine and L-lysine coatings were synthesised by a coprecipitation reaction in aqueous solvent and their characteristics were compared with naked magnetite nanoparticles. The results showed that amino acids can be a perfect coating for IONs and would increase particle stability without any significant effects on the critical properties of nanoparticles such as particle size and magnetization saturation value.

Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers (생체적합성 고분자를 사용한 다층 조립 구조 캡슐의 제조와 특성)

  • Jeon, Woohong;Kim, Gwang Yeon;Kim, Gue-Hyun;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • The aim of this work is the fabrication of polyelectrolyte microcapsules composed of biocompatible polymers such as chitosan, heparin and alginate, to encapsulate the fluorescein isothiocyanate(FITC)-albumin, and to investigate the protein release behavior therefrom. Polyelectrolyte capsules with 4-layer structures could be prepared with biocompatible materials by oppositely charged adsorption using melamin-foramide as a template. Transmission electron microscope(TEM), scanning electron microscope(SEM) and optical microscope confirmed hollow capsule structures. Protein release before and after encapsulation was monitored with a UV-Vis spectrometer. Microcapsules have different behaviors depending on the kind of polyelectrolyte polymers, chitosan-heparin capsules or chitosan-alginate capsules. In conclusion, the polyelectrolyte multilayer shells can be switched between an open and closed state by means of tuning the pH value.

마이크로머시닝 기술의 의학 및 생물학 응용

  • 장준근;김용권
    • The Magazine of the IEIE
    • /
    • v.24 no.10
    • /
    • pp.63-72
    • /
    • 1997
  • Application of MEMS to biologic system mainly categorized into bio-electronics and micro-medical systems, Bio-electronics concerns on the biocompatible electronic device, in-vivo sensors, the sensors based on biological materials, biological materials for electronics and optics, the concepts and materials Inspired by biology and useful for electronics, the algorithm inspired by biology, artificial sense, and the biologic-inorganic hybrids. Micro-medical systems are utilited into the drug delivery systems, micro patient monitoring systems, micro prosthesis and artificial organs, cardiology related prothesis, analysis systems, and the minimal invasive surgery tools based on the m icrom achining technology.

  • PDF

Characterization of Biocompatible Lipid-Based Vesicles Contained with Medicinal Herb Extracts

  • Lee, Kyu-Jin;Park, Sun young;Park, Geuntae
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.853-863
    • /
    • 2018
  • In order to increase the medicinal herbs efficiency of drug delivery, vesicles contained with medicinal herbs were prepared by phosphatidylcholines and surface active agent. Vesicles loaded with medicinal herbs were characterized by UV-spectroscopy, Zetasizer. The antioxidant activity of vesicles was measured by DPPH assay and ABTS radical scavenging assays. Also, an analysis was conducted to determine the effects of anti-inflammatory of vesicles contained medicinal herbs. In addition, the whitening effects of vesicles contained medicinal herbs extract were studied via tyrosinase inhibition assay. The results of vesicles were as follows. Vesicles appeared an average diameter of approximatively 164-599 nm. All studied vesicles contained with medicinal herbs showed antioxidant, anti-inflammatory and whitening effects in a dose-dependent manner. Therefore, this experiment achieves its purpose of synthesizing of vesicles. In conclusion, we recommended that the vesicles loaded with medicinal herbs have ability for anti-aging materials. Specifically, it will apply to cosmetic ingredients.

Fabrication and Performance Evaluation of Diaphragm-type Actuators using Biocompatible polymer (생체적합형 고분자를 이용한 박막형 이동기의 제작 및 특성평가)

  • Jung, Young-Dae;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1254-1258
    • /
    • 2007
  • Electro-active polymer (EAP), one of the smart materials, is a new alternative offering ultra-precise movements and bio-compatibility. We present the results of the design, fabrication, and performance evaluation of a fabricated diaphragm-type polymer actuator using segmented polyurethane(SPU). This paper illustrates the relationship between the elastic modulus and maximum deflection as a key property of the Maxwell stress effect and also presents the relationship between the dielectric constant and maximum deflection as a key property of the electrostriction effect, especially in polymer actuators using SPU. A diaphragm-type actuator was used to induce an equation of the vertically distributed load by using a fully clamped circular plate as the boundary condition. To verify the equation, the results were compared to the data measured from load cell. In the near future, a low-cost check valves and bio-robot can be applied by its actuators.

  • PDF

Effects of Mixing Ratio on the Mechanical and Thermal Properties of Polyelectrolyte Complex Film

  • Son Tae-Won;Kim Byung-Giu;Park Young-Mi;Lim Hak-Sang;Kwon Oh-Kyung
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.267-271
    • /
    • 2006
  • Polyelectrolyte complex films were prepared with two compounds, chitosan and poly(ethylene glycol)-monosuccinate, using a casting in order to synthesize a polyelectrolyte complex film with various mole ratios of chitosan and poly(ethylene glycol)-monosuccinate. The solution properties of isolated PEC were investigated for the effects of FTIR, pH value, Brookfield viscosity and cell viability assay using MTT staining. The PEC films were evaluated for mechanical properties by typical stress-strain curve, far thermal properties by DSC and TGA and for surface morphology Properties by SEM. Furthermore, the surface resistance, moisture regain and water content of the films were characterized. The solution properties were affected by several factors including the chitosan content in the PEC, the mixing ratio of PEG and chitosan, and pH. Several PEC in acidic conditions exhibited film formation under appropriate conditions of mixing ratio and chitosan concentration in the mixing process. These PEC films were found to have sufficiently flexible and stable properties due to their hydrophilic structure, which was farmed by the oppositely charged interaction between PEG-MS and chitosan matrix. The results showed the potential applicability of chitosan and poly(ethylene glycol)-monosuccinate films as a biocompatible polymer.