Characterization of Biocompatible Lipid-Based Vesicles Contained with Medicinal Herb Extracts

  • Lee, Kyu-Jin (Dept. of Nano Fusion Technology, Graduate School) ;
  • Park, Sun young (Bio-IT Fusion Technology Research Center, Pusan National University) ;
  • Park, Geuntae (Dept. of Nano Fusion Technology, Graduate School)
  • Received : 2018.10.04
  • Accepted : 2018.10.26
  • Published : 2018.10.31


In order to increase the medicinal herbs efficiency of drug delivery, vesicles contained with medicinal herbs were prepared by phosphatidylcholines and surface active agent. Vesicles loaded with medicinal herbs were characterized by UV-spectroscopy, Zetasizer. The antioxidant activity of vesicles was measured by DPPH assay and ABTS radical scavenging assays. Also, an analysis was conducted to determine the effects of anti-inflammatory of vesicles contained medicinal herbs. In addition, the whitening effects of vesicles contained medicinal herbs extract were studied via tyrosinase inhibition assay. The results of vesicles were as follows. Vesicles appeared an average diameter of approximatively 164-599 nm. All studied vesicles contained with medicinal herbs showed antioxidant, anti-inflammatory and whitening effects in a dose-dependent manner. Therefore, this experiment achieves its purpose of synthesizing of vesicles. In conclusion, we recommended that the vesicles loaded with medicinal herbs have ability for anti-aging materials. Specifically, it will apply to cosmetic ingredients.


Supported by : Pusan National University


  1. Alok, S., Jain, S. K., Verma, A., Kumar, M., Mahor, A., Sabharwal, M., 2014, Herbal antioxidant in clinical practice: A review, Asian Pacific J. Tropical Biomedicine, 4(1), 78-84.
  2. Ames, B. N., Shigenaga, M. K., Hagen, T. M., 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U.S.A., 90(17), 7915-7922.
  3. Ascenso, A., Raposo, S., Batista, C., Cardoso, P., Mendes, T., Praca, F. G., Bentley, M. V., Simoes, S., 2015, Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes, Int. J. Nanomedicine, 105837-5851.
  4. Bae, I., Min, H., Han, A., Seo, E., Lee, S. K., 2005, Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells, Eur. J. Pharmacol., 513(3), 237-242.
  5. Brunetti, E., Moerkerke, S., Wouters, J., Bartik, K., Jabin, I., 2016, A selective calix[6]arene-based fluorescent chemosensor for phosphatidylcholine type lipids, Org. & Biomol. Chem., 14(43), 10201-10207.
  6. Collier, M. A., Bachelder, E. M., Ainslie, K. M., 2016, Electrosprayed Myocet-like Liposomes: An Alternative to Traditional Liposome Production, Pharm. Res., 1-8.
  7. De Freitas, M. M., Fontes, P. R., Souza, P. M., Fagg, C. W., Guerra, E. N. S., de Medeiros Nobrega, Y. K., Silveira, D., Fonseca-Bazzo, Y., Simeoni, L. A., Homem-de-Mello, M., Magalhaes, P. O., 2016, Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity, PloS one, 11(9), e0163130.
  8. Fang, Y., Tsai, Y., Wu, P., Huang, Y., 2008, Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy, Int. J. Pharm., 356(1), 144-152.
  9. Huie, C. W., 2002, A Review of modern sample-preparation techniques for the extraction and analysis of medicinal plants, Analy. and bioanaly. chem., 373(1), 23-30.
  10. Jang, J. Y., Choi, Y. W., Kim, H. N., Kim, Y. R., Hong, J. W., Bae, D. W., Park, S. J., Shin, H. K., Choi, B. T., 2014, Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model, PloS one, 9(1), e85322.
  11. Kiyoshima, T., Enoki, N., Kobayashi, I., Sakai, T., Nagata, K., Wada, H., Fujiwara, H., Ookuma, Y., Sakai, H., 2012, Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts, Int. J. Mol. Med., 30(5), 1007-1012.
  12. Kumar, M., Prasad, S. K., Hemalatha, S., 2014, A Current update on the phytopharmacological aspects of Houttuynia cordata Thunb, Pharmacogn Rev., 8(15), 22-35.
  13. Lu, H., Zhang, L., Huang, H., 2015, Study on the isolation of active constituents in Lonicera japonica and the mechanism of their anti-upper respiratory tract infection action in children, African Health Sci., 15(4), 1295-1301.
  14. Matouskova, P., Marova, I., Bokrova, J., Benesova, P., 2016, Effect of Encapsulation on antimicrobial activity of herbal extracts with lysozyme, Food Tech. and Biotech., 54(3), 304.
  15. Oskuee, R., Mahmoudi, A., Gholami, L., Rahmatkhah, A., Malaekeh-Nikouei, B., 2016, Cationic liposomes modified with polyallylamine as a gene carrier: Preparation, Characterization and Transfection Efficiency Evaluation. Adv. Pharm. Bull., 6(4).
  16. Park, J., Seok, J. K., Suh, H. J., Boo, Y. C., 2014, Gardenia jasminoides extract attenuates the UVB-Induced expressions of cytokines in Kkratinocytes and indirectly inhibits matrix Mmtalloproteinase-1 expression in human dermal fibroblasts, Evidance-Based Complementary Alternative Medicine, 2014429246.
  17. Saquib, Q., Al-Khedhairy, A. A., Ahmad J., Siddiqui, M. A., Dwivedi, S., Khan, S. T., 2013, Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic poptotic pathway in WISH cells, Toxicol. Appl. Pharmacol., 273(2), 289-297.
  18. Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., Fouda, M. M. G., Ebaid, H. Hebeish, A., 2016, Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats, Biomedicine. & Pharmacotherapy, 83, 865-875.
  19. Zamani, M., Prabhakaran, M. P., Ramakrishna, S., 2013, Advances in drug delivery via electrospun and electrosprayed nanomaterials, Int J. Nanomedicine, 8(1), 2997-3017.
  20. Zhang, H., Cheng, J., Miao, H., Liu, Y., Cao, K., Wang, H., 2013, Flavonoids from Scutellaria baicalensis Georgi are effective to treat cerebral ischemia/reperfusion, Neural regen. res., 8(6), 514.