• Title/Summary/Keyword: bio-database

Search Result 242, Processing Time 0.025 seconds

A Comparative Study on Zoology & Botany Name of South and North Korea Building Bio-information Database of North Korea (북한 생물정보 DB 구축에 의한 남북한 동·식물명 비교 연구)

  • Kim, Nam-Shin;Jin, Shi-Zhu;Jin, Ying-Hua;Jung, Song-Hie
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.27-39
    • /
    • 2019
  • The object of this research is to compare zoology and botany name caused by language and science differences of South and North Korea since division. Biological data are collected North Korea biological information (flora and fauna, an illustrated flora and fauna book of North Korea, Etc.) and compared both side data based on national species list of korea, National Institute of Biological Resources. We could built 3,903 species of flora and 1,487 species flora on biological database. The criteria for comparative method is 5 types (korean name difference, scientific name difference, same species, similar species, North Korea endemic species). As a results, plants were identified korean name difference (911 species), scientific name difference (614 species), same species (880 species), North Korea endemic species (1,037 species) of 3,903 species, and animals were korean name difference (685 species), scientific name difference (104 species), same species (199 species), North Korea endemic species (226 species) of the 1,492 species. This results are expected to be in application with cooperation study for recovering bioinformatics differences of South and North Korea.

A Study on Collecting and Structuring Language Resource for Named Entity Recognition and Relation Extraction from Biomedical Abstracts (생의학 분야 학술 논문에서의 개체명 인식 및 관계 추출을 위한 언어 자원 수집 및 통합적 구조화 방안 연구)

  • Kang, Seul-Ki;Choi, Yun-Soo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.227-248
    • /
    • 2017
  • This paper introduces an integrated model for systematically constructing a linguistic resource database that can be used by machine learning-based biomedical information extraction systems. The proposed method suggests an orderly process of collecting and constructing dictionaries and training sets for both named-entity recognition and relation extraction. Multiple heterogeneous structures for the resources which are collected from diverse sources are analyzed to derive essential items and fields for constructing the integrated database. All the collected resources are converted and refined to build an integrated linguistic resource storage. In this paper, we constructed entity dictionaries of gene, protein, disease and drug, which are considered core linguistic elements or core named entities in the biomedical domains and conducted verification tests to measure their acceptability.

Design and Implementation of Protein Pathway Analysis System (단백질 경로 분석 시스템의 설계 및 구현)

  • Lee Jae-Kwon;Kang Tae-Ho;Lee Young-Hoon;Yoo Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.31-40
    • /
    • 2005
  • In the post-genomic era, researches on proteins as well as genes have been increasingly required. Particularly, work on protein-protein interaction and protein network construction have been recently establishing. Most biologists publish their research results through papers or other media. However, biologists do not use the information effectively, because the published research results are very large. As the growth of internet field, it becomes easy to access these research results. It is important to extract information with a biological meaning from various media. Therefore, In this paper, we efficiently extract the protein information from many open papers or other media and construct the database of the extracted information. We build a protein network from the established database and then design and implement various pathway analysis algorithms which find biological meaning from the protein network.

  • PDF

The Bioinformatics and Molecular Biology Approaches for Vascular Cell Signaling by Advanced Glycation Endproducts Receptor and Small Ubiquitin-Related Modifier

  • Kim, June Hyun
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.12.1-12.6
    • /
    • 2012
  • The advanced glycation endproducts receptor (AGE-R) is a signal transduction receptor for multiligand such as S100b and AGEs. S100b has been demonstrated to activate various cells with important links to atherosclerosis initiation and progression including endothelial cells, and smooth muscle cells via AGE-R, triggering activation of multiple signaling cascades through its cytoplasmic domain. Many studies have suggested AGE-R might even participate in the cardiovascular complications involved in the pathogenesis of type I diabetes. Recently, Small Ubiquitin-Related Modifier 1 (SURM-1 also known as SUMO-1) has been recognized as a protein that plays an important role in cellular post-translational modifications in a variety of cellular processes, such as transport, transcriptional, apoptosis and stability. Computer Database search with SUMOplot Analysis program identified the five potential SURMylation sites in human AGE-R: K43, K44, K123, and K273 reside within the extracellular domain of AGE-R, and lastly K374 resides with the cytosolic domain of AGE-R. The presence of the consensus yKXE motif in the AGE-R strongly suggests that AGE-R may be regulated by SURMylation process. To test this, we decided to determine if AGE-R is SURMylated in living vascular cell system. S100b-stimulated murine aortic vascular smooth muscle cells were used for western blot analysis with relevant antibodies. Taken together, bioinformatics database search and molecular biological approaches suggested AGE-R is SURMylated in living cardiovascular cell system. Whilst SURMylation and AGE-R undoubtedly plays an important role in the cardiovascular biology, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

Web-Based Data Processing and Model Linkage Techniques for Agricultural Water-Resource Analysis (농촌유역 물순환 해석을 위한 웹기반 자료 전처리 및 모형 연계 기법 개발)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung;Ryu, Jeong Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.101-111
    • /
    • 2015
  • Establishment of appropriate data in certain formats is essential for agricultural water cycle analysis, which involves complex interactions and uncertainties such as climate change, social & economic change, and watershed environmental change. The main objective of this study was to develop web-based Data processing and Model linkage Techniques for Agricultural Water-Resource analysis (AWR-DMT). The developed techniques consisted of database development, data processing technique, and model linkage technique. The watershed of this study was the upper Cheongmi stream and Geunsam-Ri. The database was constructed using MS SQL with data code, watershed characteristics, reservoir information, weather station information, meteorological data, processed data, hydrological data, and paddy field information. The AWR-DMT was developed using Python. Processing technique generated probable rainfall data using non-stationary frequency analysis and evapotranspiration data. Model linkage technique built input data for agricultural watershed models, such as the TANK and Agricultural Watershed Supply (AWS). This study might be considered to contribute to the development of intelligent watercycle analysis by developing data processing and model linkage techniques for agricultural water-resource analysis.

A Study on Design of Schema Integration based Biological Information Retrieval System (스키마 통합 기반 생명정보 검색시스템(BIRS) 설계에 관한 연구)

  • Han, Keon;Lee, Sang-Ho;Ahn, Bu-Young
    • Journal of Information Management
    • /
    • v.40 no.1
    • /
    • pp.217-234
    • /
    • 2009
  • In computer-based virtual lab, a bioscience researcher who wants to obtain bio information first uses a biodiversity-related database to retrieve information on species, ecology and distribution of an organism. The researcher also needs to access gene/protein databases such as GenBank or PDB to find information on the organism's genetic sequence and protein structure. Furthermore, the researcher should search for academic papers containing the information on the organism so that his research is based on comprehensive and accurate information. This series of activities often undermines research efficiency as it takes a lot of time and causes inconvenience on the part of researchers. To solve such inconvenience, we analyzed various methods for integrated search and chosen schema integration. In addition, we analyzed each databases and extracted metadata for designing schema integration. This paper introduces a biological information retrieval system(BIRS) using schema integration and it's interface that will increase research efficiency for bioscience.

Design of Efficient Storage Exploiting Structural Similarity in Microarray Data (마이크로어레이 데이터의 구조적 유사성을 이용한 효율적인 저장 구조의 설계)

  • Yun, Jong-Han;Shin, Dong-Kyu;Shin, Dong-Il
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.643-650
    • /
    • 2009
  • As one of typical techniques for acquiring bio-information, microarray has contributed greatly to development of bioinformatics. Although it is established as a core technology in bioinformatics, it has difficulty in sharing and storing data because data from experiments has huge and complex type. In this paper, we propose a new method which uses the feature that microarray data format in MAGE-ML, a standard format for exchanging data, has frequent structurally similar patterns. This method constructs compact database by simplifying MAGE-ML schema. In this method, Inlining techniques and newly proposed classification techniques using structural similarity of elements are used. The structure of database becomes simpler and number of table-joins is reduced, performance is enhanced using this method.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Expressed sequence tag analysis of Meretrix lusoria (Veneridae) in Korea (한국산 백합 (Meretrix lusoria) 의 전사체 분석)

  • Kang, Jung-Ha;Jeong, Ji Eun;Kim, Bong Seok;An, Chel-Min;Kang, Hyun-Sook;Kang, Se-Won;Hwang, Hee Ju;Han, Yeon Soo;Chae, Sung-Hwa;Ko, Hyun-Sook;Lee, Jun-Sang;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The importance of biological resources has been gradually increasing, and mollusks have been utilized as main fishery resources in terrestrial ecosystems. But little is known about genomic and transcriptional analysis in mollusks. This is the first report on the transcriptomic profile of Meretrix lusoria. In this study, we constructed cDNA library and determined 542 of distinct EST sequences composed of 284 singletons and 95 contigs. At first, we identified 180 of EST sequences that have significant hits on protein sequences of the exclusive Mollusks database through BLASTX program and 343 of EST sequences that have significant hits on NCBI NR database. We also found that 211 of putative sequences through local BLAST (blastx, E < e-10) search against KOG database were classified into 16 functional categories. Some kinds of immune response related genes encoding allograft inflammatory factor 1 (AIF-1), B-cell translocation gene 1 (BTG1), C-type lectin A, thioester-containing protein and 26S proteasome regulatory complex were identified. To determine phylogenetic relationship, we identified partial sequences of four genes (COX1, COX2, 12S rRNA and NADH dehydrogenase) that significantly matched with the mitochondrial genomes of 3 species-Ml (Meretrix lusoria), Mp (Meretrix petechialis) and Mm (Meretrix meretrix). As a result, we found that there was a little bit of a difference between sequences of Korean isolates and other known isolates. This study will be useful to develop breeding technology and might also be helpful to establish a classification system.

Property-based Design of Ion-Channel-Targeted Library

  • Ahn, Ji-Young;Nam, Ky-Youb;Chang, Byung-Ha;Yoon, Jeong-Hyeok;Cho, Seung-Joo;Koh, Hun-Yeong;No, Kyoung-Tai
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.134-138
    • /
    • 2005
  • The design of ion channel targeted library is a valuable methodology that can aid in the selection and prioritization of potential ion channel-likeness for ion-channel-targeted bio-screening from large commercial available chemical pool. The differences of property profiling between the 93 ion-channel active compounds from MDDR and CMC database and the ACDSC compounds were classified by suitable descriptors calculated with preADME software. Through the PCA, clustering, and similarity analysis, the compounds capable of ion channel activity were defined in ACDSC compounds pool. The designed library showed a tendency to follow the property profile of ion-channel active compounds and can be implemented with great time and economical efficiencies of ligand-based drug design or virtual high throughput screening from an enormous small molecule space.

  • PDF