DOI QR코드

DOI QR Code

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Received : 2023.02.13
  • Accepted : 2023.04.20
  • Published : 2023.06.30

Abstract

Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Keywords

Acknowledgement

This work was supported by the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) and Mae Fah Luang University.

References

  1. Bukavina L, Bensalah K, Bray F, Carlo M, Challacombe B, Karam JA, et al. Epidemiology of renal cell carcinoma: 2022 update. Eur Urol 2022;82:529-542. https://doi.org/10.1016/j.eururo.2022.08.019
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 xountries. CA Cancer J Clin 2021;71:209-249. https://doi.org/10.3322/caac.21660
  3. Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021;17:245-261. https://doi.org/10.1038/s41581-020-00359-2
  4. Hu SL, Chang A, Perazella MA, Okusa MD, Jaimes EA, Weiss RH, et al. The nephrologist's rumor: basic biology and management of renal cell carcinoma. J Am Soc Nephrol 2016;27:2227-2237. https://doi.org/10.1681/ASN.2015121335
  5. Smith KR, Penzes P. Ankyrins: roles in synaptic biology and pathology. Mol Cell Neurosci 2018;91:131-139. https://doi.org/10.1016/j.mcn.2018.04.010
  6. Peters LL, John KM, Lu FM, Eicher EM, Higgins A, Yialamas M, et al. Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J Cell Biol 1995;130:313-330. https://doi.org/10.1083/jcb.130.2.313
  7. Kizhatil K, Davis JQ, Davis L, Hoffman J, Hogan BL, Bennett V. Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J Biol Chem 2007;282:26552-26561. https://doi.org/10.1074/jbc.M703158200
  8. Lopez C, Metral S, Eladari D, Drevensek S, Gane P, Chambrey R, et al. The ammonium transporter RhBG: requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J Biol Chem 2005;280:8221-8228.
  9. Klemens CA, Edinger RS, Kightlinger L, Liu X, Butterworth MB. Ankyrin G expression regulates apical delivery of the epithelial sodium channel (ENaC). J Biol Chem 2017;292:375-385. https://doi.org/10.1074/jbc.M116.753616
  10. Thorsen K, Schepeler T, Oster B, Rasmussen MH, Vang S, Wang K, et al. Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis. BMC Genomics 2011;12:505.
  11. Yeon SY, Jo YS, Choi EJ, Kim MS, Yoo NJ, Lee SH. Frameshift mutations in repeat sequences of ANK3, HACD4, TCP10L, TP53BP1, MFN1, LCMT2, RNMT, TRMT6, METTL8 and METTL16 genes in colon cancers. Pathol Oncol Res 2018;24:617-622. https://doi.org/10.1007/s12253-017-0287-2
  12. Lattanzi M, Lee Y, Simpson D, Moran U, Darvishian F, Kim RH, et al. Primary melanoma histologic subtype: impact on survival and response to therapy. J Natl Cancer Inst 2019;111:180-188. https://doi.org/10.1093/jnci/djy086
  13. Zhang D, Lu W, Zhuo Z, Mei H, Wu X, Cui Y. Construction of a breast cancer prognosis model based on alternative splicing and immune infiltration. Discov Oncol 2022;13:78.
  14. Wang T, Abou-Ouf H, Hegazy SA, Alshalalfa M, Stoletov K, Lewis J, et al. Ankyrin G expression is associated with androgen receptor stability, invasiveness, and lethal outcome in prostate cancer patients. J Mol Med (Berl) 2016;94:1411-1422. https://doi.org/10.1007/s00109-016-1458-4
  15. Kurozumi S, Joseph C, Raafat S, Sonbul S, Kariri Y, Alsaeed S, et al. Utility of ankyrin 3 as a prognostic marker in androgen-receptor-positive breast cancer. Breast Cancer Res Treat 2019;176:63-73. https://doi.org/10.1007/s10549-019-05216-w
  16. Zeng C, Long J, Deng C, Xie L, Ma H, Guo Y, et al. Genetic alterations in papillary thyroid carcinoma with Hashimoto's thyroiditis: ANK3, an indolent maintainer of papillary thyroid carcinoma. Front Oncol 2022;12:894786.
  17. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019;47:W556-W560. https://doi.org/10.1093/nar/gkz430
  18. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017;19:649-658. https://doi.org/10.1016/j.neo.2017.05.002
  19. Ponten F, Jirstrom K, Uhlen M. The Human Protein Atlas: a tool for pathology. J Pathol 2008;216:387-393. https://doi.org/10.1002/path.2440
  20. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics: tissue-based map of the human proteome. Science 2015;347:1260419.
  21. Lanczky A, Gyorffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res 2021;23:e27633.
  22. Xie L, Wang Q, Dang Y, Ge L, Sun X, Li N, et al. OSkirc: a web tool for identifying prognostic biomarkers in kidney renal clear cell carcinoma. Future Oncol 2019;15:3103-3110. https://doi.org/10.2217/fon-2019-0296
  23. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017;77:e108-e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
  24. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 2016;17:174.
  25. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2:401-404. https://doi.org/10.1158/2159-8290.CD-12-0095
  26. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:pl1.
  27. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010;38:W214-W220. https://doi.org/10.1093/nar/gkq537
  28. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020;36:2628-2629. https://doi.org/10.1093/bioinformatics/btz931
  29. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 2020;48:W509-W514. https://doi.org/10.1093/nar/gkaa407
  30. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006;58:726-741. https://doi.org/10.1124/pr.58.4.5
  31. Wagner N, Wagner KD. Peroxisome proliferator-activated receptors and the hallmarks of cancer. Cells 2022;11:2432.
  32. Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021;114:154338.
  33. Stankewich MC, Moeckel GW, Ji L, Ardito T, Morrow JS. Isoforms of spectrin and ankyrin reflect the functional topography of the mouse kidney. PLoS One 2016;11:e0142687.
  34. Piva F, Santoni M, Matrana MR, Satti S, Giulietti M, Occhipinti G, et al. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies. Expert Rev Mol Diagn 2015;15:1201-1210. https://doi.org/10.1586/14737159.2015.1068122
  35. Bennett V, Lorenzo DN. Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Curr Top Membr 2013;72:1-37. https://doi.org/10.1016/B978-0-12-417027-8.00001-5
  36. Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 2013;126:21-29. https://doi.org/10.1242/jcs.120907
  37. Yang Y, Dhar S, Taylor J, Krishnan B. Papillary renal cell carcinoma in Lynch/Muir-Torre syndrome with germline pathogenic variant in MSH6 and molecular analysis: report of a case and review of the literature. J Kidney Cancer VHL 2021;8:8-19. https://doi.org/10.15586/jkcvhl.v8i2.175
  38. Stratton KL, Alanee S, Glogowski EA, Schrader KA, Rau-Murthy R, Klein R, et al. Outcome of genetic evaluation of patients with kidney cancer referred for suspected hereditary cancer syndromes. Urol Oncol 2016;34:238.e1-e237. https://doi.org/10.1016/j.urolonc.2015.11.021
  39. Giraldez MD, Balaguer F, Bujanda L, Cuatrecasas M, Munoz J, Alonso-Espinaco V, et al. MSH6 and MUTYH deficiency is a frequent event in early-onset colorectal cancer. Clin Cancer Res 2010;16:5402-5413. https://doi.org/10.1158/1078-0432.CCR-10-1491
  40. Yi D, Xu L, Luo J, You X, Huang T, Zi Y, et al. Germline TP53 and MSH6 mutations implicated in sporadic triple-negative breast cancer (TNBC): a preliminary study. Hum Genomics 2019;13:4.
  41. Abu Aboud O, Wettersten HI, Weiss RH. Inhibition of PPARalpha induces cell cycle arrest and apoptosis, and synergizes with glycolysis inhibition in kidney cancer cells. PLoS One 2013;8:e71115.
  42. Abu Aboud O, Donohoe D, Bultman S, Fitch M, Riiff T, Hellerstein M, et al. PPARalpha inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth. Am J Physiol Cell Physiol 2015;308:C890-C898. https://doi.org/10.1152/ajpcell.00322.2014
  43. Collet N, Theoleyre S, Rageul J, Mottier S, Jouan F, Rioux-Leclercq N, et al. PPARgamma is functionally expressed in clear cell renal cell carcinoma. Int J Oncol 2011;38:851-857.
  44. Sanchez DJ, Steger DJ, Skuli N, Bansal A, Simon MC. PPARgamma is dispensable for clear cell renal cell carcinoma progression. Mol Metab 2018;14:139-149. https://doi.org/10.1016/j.molmet.2018.05.013
  45. Lee YM, Lee MA, Choi JK, Kim MS, Jeon EH, Choi SI, et al. Identification of proteins interacting with C-terminal region of human ankyrin-G. J Biomed Lab Sci 2003;9:159-165.
  46. Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/ SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci U S A 1998;95:4333-4337. https://doi.org/10.1073/pnas.95.8.4333
  47. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017;169:736-749. https://doi.org/10.1016/j.cell.2017.04.016
  48. Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L, et al. Immune infiltration in renal cell carcinoma. Cancer Sci 2019;110:1564-1572. https://doi.org/10.1111/cas.13996
  49. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 2021;39:649-661. https://doi.org/10.1016/j.ccell.2021.02.015
  50. Liang Z, Nong F, Zhao J, Wei D, Tang Q, Song J, et al. Heterogeneity in NK cell subpopulations may be involved in kidney cancer metastasis. J Immunol Res 2022;2022:6378567.
  51. Chakiryan NH, Kimmel GJ, Kim Y, Hajiran A, Aydin AM, Zemp L, et al. Spatial clustering of CD68+ tumor associated macrophages with tumor cells is associated with worse overall survival in metastatic clear cell renal cell carcinoma. PLoS One 2021;16:e0245415.
  52. Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res 2017;23:4416-4428. https://doi.org/10.1158/1078-0432.CCR-16-2848