DOI QR코드

DOI QR Code

Insight from sirtuins interactome: topological prominence and multifaceted roles of SIRT1 in modulating immunity, aging, and cancer

  • Nur Diyana Zulkifli (Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia) ;
  • Nurulisa Zulkifle (Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia)
  • 투고 : 2023.01.27
  • 심사 : 2023.04.17
  • 발행 : 2023.06.30

초록

The mammalian sirtuin family, consisting of SIRT1-SIRT7, plays a vital role in various biological processes, including cancer, diabetes, neurodegeneration, cardiovascular disease, cellular metabolism, and cellular homeostasis maintenance. Due to their involvement in these biological processes, modulating sirtuin activity seems promising to impact immuneand aging-related diseases, as well as cancer pathways. However, more understanding is required regarding the safety and efficacy of sirtuin-targeted therapies due to the complex regulatory mechanisms that govern their activity, particularly in the context of multiple targets. In this study, the interaction landscape of the sirtuin family was analyzed using a systems biology approach. A sirtuin protein-protein interaction network was built using the Cytoscape platform and analyzed using the NetworkAnalyzer and stringApp plugins. The result revealed the sirtuin family's association with numerous proteins that play diverse roles, suggesting a complex interplay between sirtuins and other proteins. Based on network topological and functional analysis, SIRT1 was identified as the most prominent among sirtuin family members, demonstrating that 25 of its protein partners are involved in cancer, 22 in innate immune response, and 29 in aging, with some being linked to a combination of two or more pathways. This study lays the foundation for the development of novel therapies that can target sirtuins with precision and efficacy. By illustrating the various interactions among the proteins in the sirtuin family, we have revealed the multifaceted roles of SIRT1 and provided a framework for their possible roles to be precisely understood, manipulated, and translated into therapeutics in the future.

키워드

과제정보

This work was supported by Ministry of Higher Education (MOHE), Malaysia through Fundamental Research Grant Scheme (FRGS/1/2019/SKK08/USM/02/17).

참고문헌

  1. Gottlieb S, Esposito RE. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 1989;56:771-776. https://doi.org/10.1016/0092-8674(89)90681-8
  2. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793-798. https://doi.org/10.1006/bbrc.2000.3000
  3. Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 1999;99:735-745. https://doi.org/10.1016/S0092-8674(00)81671-2
  4. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010;5:253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
  5. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260:273-279. https://doi.org/10.1006/bbrc.1999.0897
  6. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A 2002;99:13653-13658. https://doi.org/10.1073/pnas.222538099
  7. Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol Cell Biol 2011;31:1022-1029. https://doi.org/10.1128/MCB.01206-10
  8. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570-2580. https://doi.org/10.1101/gad.13.19.2570
  9. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004;101:15998-16003. https://doi.org/10.1073/pnas.0404184101
  10. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010;1:3.
  11. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 2013;18:416-430. https://doi.org/10.1016/j.cmet.2013.07.013
  12. Zhao L, Cao J, Hu K, He X, Yun D, Tong T, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis 2020;11:927-945. https://doi.org/10.14336/AD.2019.0820
  13. Lin Z, Fang D. The roles of SIRT1 in cancer. Genes Cancer 2013;4:97-104. https://doi.org/10.1177/1947601912475079
  14. Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 2015;15:608-624. https://doi.org/10.1038/nrc3985
  15. Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 2007;72:483-488. https://doi.org/10.1101/sqb.2007.72.024
  16. Fortuny L, Sebastian C. Sirtuins as metabolic regulators of immune cells phenotype and function. Genes (Basel) 2021;12:1698.
  17. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 2016;8:61.
  18. Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther 2018;188:140-154. https://doi.org/10.1016/j.pharmthera.2018.03.004
  19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504. https://doi.org/10.1101/gr.1239303
  20. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, et al. IntAct: open source resource for molecular interaction data. Nucleic Acids Res 2007;35:D561-D565. https://doi.org/10.1093/nar/gkl958
  21. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, et al. MINT: the Molecular INTeraction database. Nucleic Acids Res 2007;35:D572-D574. https://doi.org/10.1093/nar/gkl950
  22. Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 2012;9:345-350. https://doi.org/10.1038/nmeth.1931
  23. Millan PP. Visualization and analysis of biological networks. Methods Mol Biol 2013;1021:63-88. https://doi.org/10.1007/978-1-62703-450-0_4
  24. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 2019;18:623-632. https://doi.org/10.1021/acs.jproteome.8b00702
  25. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res 2013;41:D1228-D1233. https://doi.org/10.1093/nar/gks1147
  26. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res 2018;46:D1083-D1090. https://doi.org/10.1093/nar/gkx1042
  27. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018;18:696-705. https://doi.org/10.1038/s41568-018-0060-1
  28. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics 2008;24:282-284. https://doi.org/10.1093/bioinformatics/btm554
  29. Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 2011;12:436.
  30. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002;30:1575-1584. https://doi.org/10.1093/nar/30.7.1575
  31. McGuinness D, McGuinness DH, McCaul JA, Shiels PG. Sirtuins, bioageing, and cancer. J Aging Res 2011;2011:235754.
  32. Carafa V, Nebbioso A, Altucci L. Sirtuins and disease: the road ahead. Front Pharmacol 2012;3:4.
  33. Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G. Genealogy of an ancient protein family: the sirtuins, a family of disordered members. BMC Evol Biol 2013;13:60.
  34. Vassilopoulos A, Fritz KS, Petersen DR, Gius D. The human sirtuin family: evolutionary divergences and functions. Hum Genomics 2011;5:485-496. https://doi.org/10.1186/1479-7364-5-5-485
  35. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol 2007;21:1745-1755. https://doi.org/10.1210/me.2007-0079
  36. Greiss S, Gartner A. Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol Cells 2009;28:407-415. https://doi.org/10.1007/s10059-009-0169-x
  37. Pan M, Yuan H, Brent M, Ding EC, Marmorstein R. SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity. J Biol Chem 2012;287:2468-2476. https://doi.org/10.1074/jbc.M111.285031
  38. North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2007;2:e784.
  39. Yoon H, Shin SH, Shin DH, Chun YS, Park JW. Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochem Biophys Res Commun 2014;444:36-43. https://doi.org/10.1016/j.bbrc.2014.01.001
  40. Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013;5:344-352. https://doi.org/10.1002/emmm.201302451
  41. White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med 2014;46:S7-S15. https://doi.org/10.1016/j.amepre.2013.10.029
  42. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323-331. https://doi.org/10.1016/S0092-8674(00)81871-1
  43. Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response. J Cell Sci 2020;133:jcs237453.
  44. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci U S A 2007;104:16633-16638. https://doi.org/10.1073/pnas.0708043104
  45. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007;67:3043-3053. https://doi.org/10.1158/0008-5472.CAN-06-4149
  46. Oskouian B, Saba JD. Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol 2010;688:185-205. https://doi.org/10.1007/978-1-4419-6741-1_13
  47. Zhang Y, Wang X, Yang H, Liu H, Lu Y, Han L, et al. Kinase AKT controls innate immune cell development and function. Immunology 2013;140:143-152. https://doi.org/10.1111/imm.12123
  48. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20:98-105.
  49. Kosgei VJ, Coelho D, Gueant-Rodriguez RM, Gueant JL. Sirt1-PPARS cross-talk in complex metabolic diseases and inherited disorders of the one carbon metabolism. Cells 2020;9:1882.
  50. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015;17:351-359. https://doi.org/10.1038/ncb3124
  51. Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol 2020;13:165.
  52. Ruiz de Galarreta M, Bresnahan E, Molina-Sanchez P, Lindblad KE, Maier B, Sia D, et al. Beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 2019;9:1124-1141. https://doi.org/10.1158/2159-8290.CD-19-0074
  53. Jia L, Pina-Crespo J, Li Y. Restoring Wnt/beta-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019;12:104.