DOI QR코드

DOI QR Code

Comparison of digital PCR platforms using the molecular marker

  • Cherl-Joon Lee (Department of Bio-Convergence Engineering, Dankook University) ;
  • Wonseok Shin (NGS Clinical Laboratory, Dankook University Hospital) ;
  • Minsik Song (OPTOLANE Inc.) ;
  • Seung-Shick Shin (OPTOLANE Inc.) ;
  • Yujun Park (Department of Microbiology, College of Science & Technology, Dankook University) ;
  • Kornsorn Srikulnath (Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University) ;
  • Dong Hee Kim (Department of Anesthesiology and Pain Management, Dankook University College of Medicine) ;
  • Kyudong Han (Department of Bio-Convergence Engineering, Dankook University)
  • Received : 2023.02.02
  • Accepted : 2023.03.29
  • Published : 2023.06.30

Abstract

Assays of clinical diagnosis and species identification using molecular markers are performed according to a quantitative method in consideration of sensitivity, cost, speed, convenience, and specificity. However, typical polymerase chain reaction (PCR) assay is difficult to quantify and have various limitations. In addition, to perform quantitative analysis with the quantitative real-time PCR (qRT-PCR) equipment, a standard curve or normalization using reference genes is essential. Within the last a decade, previous studies have reported that the digital PCR (dPCR) assay, a third-generation PCR, can be applied in various fields by overcoming the shortcomings of typical PCR and qRT-PCR assays. We selected Stilla Naica System (Stilla Technologies), Droplet Digital PCR Technology (Bio-Rad), and Lab on an Array Digital Real-Time PCR analyzer system (OPTOLANE) for comparative analysis among the various droplet digital PCR platforms currently in use commercially. Our previous study discovered a molecular marker that can distinguish Hanwoo species (Korean native cattle) using Hanwoo-specific genomic structural variation. Here, we report the pros and cons of the operation of each dPCR platform from various perspectives using this species identification marker. In conclusion, we hope that this study will help researchers to select suitable dPCR platforms according to their purpose and resources.

Keywords

Acknowledgement

The authors gratefully acknowledge the Bio-Medical Engineering Research Center at Dankook University. The research institute has been supported by the Department of Microbiology was supported through the Research-Focused Department Promotion & Interdisciplinary Convergence Research Project as a part of the Support Program for University Development for Dankook University in 2022.

References

  1. Hill WE. The polymerase chain reaction: applications for the detection of foodborne pathogens. Crit Rev Food Sci Nutr 1996;36:123-173. https://doi.org/10.1080/10408399609527721
  2. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1350-1354. https://doi.org/10.1126/science.2999980
  3. Valones MA, Guimaraes RL, Brandao LA, de Souza PR, de Albuquerque Tavares Carvalho A, Crovela S. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol 2009;40:1-11. https://doi.org/10.1590/S1517-83822009000100001
  4. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996;6:986-994. https://doi.org/10.1101/gr.6.10.986
  5. Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? Expert Rev Mol Diagn 2009;9:187-197. https://doi.org/10.1586/14737159.9.2.187
  6. Tsai MA, Chen IH, Wang JH, Chou SJ, Li TH, Leu MY, et al. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas). PeerJ 2017;5:e3840.
  7. Cook NL, Kleinig TJ, van den Heuvel C, Vink R. Reference genes for normalising gene expression data in collagenase-induced rat intracerebral haemorrhage. BMC Mol Biol 2010;11:7.
  8. Sidstedt M, Radstrom P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 2020;412:2009-2023. https://doi.org/10.1007/s00216-020-02490-2
  9. Morley AA. Digital PCR: a brief history. Biomol Detect Quantif 2014;1:1-2. https://doi.org/10.1016/j.bdq.2014.06.001
  10. Tan C, Fan D, Wang N, Wang F, Wang B, Zhu L, et al. Applications of digital PCR in COVID-19 pandemic. View (Beijing) 2021;2:20200082.
  11. Nyaruaba R, Mwaliko C, Kering KK, Wei H. Droplet digital PCR applications in the tuberculosis world. Tuberculosis (Edinb) 2019;117:85-92. https://doi.org/10.1016/j.tube.2019.07.001
  12. Hall Sedlak R, Jerome KR. The potential advantages of digital PCR for clinical virology diagnostics. Expert Rev Mol Diagn 2014;14:501-507. https://doi.org/10.1586/14737159.2014.910456
  13. Park J, Shin W, Mun S, Oh MH, Lim D, Oh DY, et al. Investigation of Hanwoo-specific structural variations using whole-genome sequencing data. Genes Genomics 2019;41:233-240. https://doi.org/10.1007/s13258-018-0772-3
  14. Madic J, Zocevic A, Senlis V, Fradet E, Andre B, Muller S, et al. Three-color crystal digital PCR. Biomol Detect Quantif 2016;10:34-46. https://doi.org/10.1016/j.bdq.2016.10.002
  15. Falak S, Macdonald R, Busby EJ, O'Sullivan DM, Milavec M, Plauth A, et al. An assessment of the reproducibility of reverse transcription digital PCR quantification of HIV-1. Methods 2022;201:34-40.
  16. Lyu L, Li Z, Pan L, Jia H, Sun Q, Liu Q, et al. Evaluation of digital PCR assay in detection of M. tuberculosis IS6110 and IS1081 in tuberculosis patients plasma. BMC Infect Dis 2020;20:657.
  17. Lee CJ, Shin W, Mun S, Yu M, Choi YB, Kim DH, et al. Diagnostic evaluation of qRT-PCR-based kit and dPCR-based kit for COVID-19. Genes Genomics 2021;43:1277-1288. https://doi.org/10.1007/s13258-021-01162-4
  18. Shin W, Lee CJ, Lee YM, Choi YB, Mun S, Han K. Rapid identification of SARS-CoV-2 in the point-of-care using digital PCRbased Dr. PCR Di20K COVID-19 Detection Kit without viral RNA extraction. Genes Genomics 2022;44:617-628. https://doi.org/10.1007/s13258-022-01242-z
  19. Shin W, Kim H, Oh DY, Kim DH, Han K. Quantitative evaluation of the molecular marker using droplet digital PCR. Genomics Inform 2020;18:e4.
  20. Fava C, Bernardi S, Gottardi EM, Lorenzatti R, Galeotti L, Ceccherini F, et al. Alignment of Qx100/Qx200 Droplet Digital (BioRad) and QuantStudio 3D (Thermofisher) digital PCR for quantification of BCR-ABL1 in Ph+ chronic myeloid leukemia. Diseases 2021;9:35.