• Title/Summary/Keyword: bio-adhesive

Search Result 81, Processing Time 0.022 seconds

Synthesis and Property Evaluation of Bio-adhesives Using Peach Gum(桃膠) (도교(桃膠)를 이용한 바이오 접착제의 합성 및 물성 평가)

  • Park, Min-Seon;Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.282-288
    • /
    • 2021
  • This basic research was conducted to support the development of woodcraft bio-adhesives using peach gum, which is the resin produced by peach trees. The synthesis conditions of these adhesives were optimized by performing 144 experiments. The application potential of peach gum adhesives was explored by comparing their properties with those of three natural adhesives and four synthetic adhesives. The best adhesive strength was obtained by dissolving the resin in 80 mL of distilled water containing 1.5 g NaOH, 1.65 g H2O2 ( pH 8.0-9.0), 0.5 g NaClO, and 0.5 g H2BO2. The adhesive strength, which showed minimal changes and excellent reversibility, was 125.39 kgf/cm2. Ultraviolet radiation-mediated deterioration in strength in the absence of total aerobic bacteria was negligible (△E*ab = 2.75). These data confirm the potential value of peach gum-based bio-adhesives for woodcraft as well as their utility as alternatives for natural and synthetic adhesives used for the manufacture and restoration of handicrafts and preservation of cultural assets.

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Synthesis of Polyester-Polyamine Dispersants and Their Carbon Dispersing Properties (폴리에스테르-폴리아민 분산제의 합성 및 카본 분산 특성)

  • Son, Jeong-Mae;Yuk, Jeong-Suk;Lee, Sangjun;Kim, Juhyun;Kim, Nam-Kyun;Shin, Jihoon;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.224-233
    • /
    • 2014
  • We prepared polyester-polyamines to improve the effect of carbon black dispersibility for use in thermal transfer ink, and synthesized polymeric dispersing agents by two-step reactions. In the first step, we made polyester by polycondensing 1,6-hexanediol and adipic acid. The resulting polymers had carboxylic acid, which was linked with polyamine via an acid-base reaction. We then characterized the polyester-polyamine structure by NMR spectroscopy and Fourier transform infrared spectroscopy (FT-IR). We also determined the basic characterizations such as total acid numbers (TAN) (5.0-67.5 mgKOH/g), hydroxyl values (27.1-67.5 mgKOH/g), and molar masses ($M_n=1.6-8.4kg\;mol^{-1}$) for the polyester and total base numbers (TBN) (15.3-57.1 mgKOH/g), hydroxyl values (33.0-79.8 mgKOH/g), and nitrogen contents (1.02-3.48%) for the polyester-polyamine polymers. We thus prepared thermal transfer ink using carbon blacks and the polyester-polyamine dispersing agents, and evaluated the resulting mixtures for printability, adhesive force, storage stability, ink appearance, ink gloss, and processability. These mixtures showed significant dispersibility for carbon black in the ink. Thus, we concluded that the dispersibility of the polymeric materials depended on the polyamine structure and the hydrophilicity-hydrophobicity distribution of the polymeric dispersants.

THE FILM THICKNESS AND RETENTION OF CAST CROWN USING ADHESIVE RESIN CEMENTS (접착성 레진 시멘트를 이용한 주조관의 피막후경과 유지력에 관한 연구)

  • Jung Young-Wan;Cho Hye-Won;Jin Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.437-443
    • /
    • 1992
  • This study was performed to investigate the availability of adhesive resin cement for luting agent of cast crown. The resin cements used in this study were Panavia-Ex(Kuraray Co., Japan) and C & B-Metabond (Parkell Bio-Materials U.S.A.). Zinc phosphate cement was Flecks zinc cement(Mizzy Inc., U.S.A.) The film thickness of cast crown at gingival margin, lateral wall and occlusal surface was observed with measuring microscope(Modek MXT 70 Matsuzawa Seiki Co., Japan) and the retention of cast crown was measured with Instron Universal Test Machine (Instron Engineering Co., U.S.A.) The results were as follows : 1. The value of retention of cast crown was the highest in the use of Panavia-EX, followed by C & B-Metabond and 2inc phosphate cement, respectively. 2. There was no difference in film thickness among the three cements, but the film thickness in all cements was highest at occlusal surface.

  • PDF

Development of Adhesive Resins Formulated with Rapeseed Flour Akali Hydrolyzates for Plywood Panels (유채박의 알칼리 가수분해물을 이용한 합판용 접착제의 개발)

  • Yang, In;Jeong, Jae-Hoon;Han, Gyu-Seong;Cho, In-Gyu;SaGong, Moon;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.323-332
    • /
    • 2010
  • Petroleum-based adhesive resins have extensively been used for the production of wood panels. However, it is necessary to develop environmentally friendly adhesive resins due to the increase of manufacturing cost and the environmental issue, such as the emission of volatile organic compounds, of the pertroleum-based adhesive resins. This study was conducted to formulate environmentally friendly adhesive resins using by rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, for replacing petroleum-based adhesives with them. To formulate RSF-based adhesive resins, RSF was hydrolyzed in de-ionized water, 1% and 3% sodium hydroxide solutions. As a crosslinking agent, PF prepolymers were prepared with 1.8, 2.1 and 2.4 mol formaldehyde and 1 mol phenol (1.8-, 2.1- and 2.4-PF), and then mixed with RSF hydrolyzates to complete the formulation of RSF-based adhesive resins. The RSF-based adhesive resins were applied to fabricate 3-ply plywood panels. The solid content of RSF-based adhesive resins were ranged from 26.08% to 36.12% depending on the hydrolysis condition of RSF and PF prepolymer type with a high viscosity. The tensile shear strength and wood failure of plywood fabricated with RSF-based adhesive resins exceeded a minimum requirement of KS standard for ordinary plywood regardless of the hydrolysis condition of RSF and PF prepolymer type. Formaldehyde emissions of the plywood panels fabricated with 1.8-PF and RSF hydrolyzates were lower than that of E0 specified in the KS standard. Based on the results, RSF might be used as a raw material of environmentally friendly adhesives for the production of plywood panels, but further researches - the increase of solid content of RSF-based adhesives for reducing press time and the microscopic observation of plywood specimen for identifying the relationship between tensile shear strength and the penetration of adhesives into wood structure - are required to commercialize the RSF-based adhesives.

Carrageenan-Based Liquid Bioadhesives for Paper and Their Physical Properties (카라기난 기반 액상형 바이오 종이 접착제의 제조 및 물성에 관한 연구)

  • Oh, Seung-Jun;Han, Won-Sik;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • There is a growing demand for natural materials to replace adhesives based on volatile organic compounds (VOCs). However, the exclusion of VOCs from the manufacturing process leads to difficulties in manufacturing, and reduction in productivity and preservability. In this paper, we report the manufacture of natural bioadhesives using the carrageenan component of seaweed. λ-carrageenan, isolated from the extracted total carrageenan, was used to prepare a highly stable adhesive for paper. The resulting composition was 52.0 ± 1.0% λ-carrageenan, 30.5 ± 0.5% Polyvinylpyrrolidone, 1.0 ± 0.05% ethylhexylglycerin, 1.5 ± 0.05% glycerin, 13.5 ± 0.5% dextrine, and 0.6 ± 0.05% food-grade antifoam emulsion. The viscosity was found to be 1.13 ± 0.07 × 105 cP (25℃), UV degradation occurred at pH6.22, drying rate was 15min, △b* was -10.79, and △E* ab was 8.18. The bioadhesive showed an excellent adhesion strength of 44.63 kgf/cm2. Thus this adhesive showed excellent fungal resistance and good adhesive persistence, without the presence of total volatile organic compounds (TVOC), formaldehyde (HCHO), and heavy metals.

Effect of Vigna angularis on Toll-like Receptor Activation and Pro-inflammatory Cytokine Production (적소두 추출물이 톨유사수용체 활성 및 염증유발 사이토카인의 생성에 미치는 영향)

  • Kim, Mi-Hwa;Jeoung, See-Hwa;Lee, Seung-Woong;Kim, Hyun-Kyu;Park, Chan-Sun;Jeon, Byung-Hun;Oh, Hyun-Mee;Rho, Mun-Chual
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.511-518
    • /
    • 2012
  • The mechanisms of Toll-like receptor (TLR) signaling have been the focus of extensive studies because TLRs are the target of therapeutic intervention on multiple diseases. In this study, we investigated the inhibitory potential of Vigna angularis (azuki bean) on the TLR signaling. The effect of Vigna angularis extract (JSD) on TLR activation was investigated by assessing NF-${\kappa}B$ and AP-1 inducible secreted embryonic alkaline phosphatase (SEAP) activity. JSD significantly inhibited SEAP activity induced by poly I:C (TLR3 ligand) and poly I (TLR7 ligand) in a dose-dependent manner at concentration below 100 ${\mu}g/ml$ with no sign of cytotoxicity. Pretreatment of JSD markedly suppressed mRNA expressions of pro-inflammatory cytokines and adhesive molecules such as TNF-${\alpha}$, IL-6, RANTES, MCP-1 and ICAM-1 induced by TLR ligands. It also diminished the phosphorylation of $I{\kappa}B$ kinase and $I{\kappa}B$, and followed by $I{\kappa}B$-mediated nuclear translocation of p50, p65, and phosphorylation of p38, JNK, and IRF signaling pathway. In conclusion, our results suggest that Vigna angularis has inhibitory activity on TLR-3 and -7 signaling and it can be further developed as a remedy in curing TLR-related multiple diseases.

Preparation and Physical Properties of Bio-Composites Using Kenaf Cultivated in Korea (국내 재배 케나프 섬유를 이용한 바이오복합재의 제조와 물리적 특성)

  • Kim, Dae-Sung;Song, Kyung-Hun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1889-1899
    • /
    • 2010
  • This study examines the preparation and characterization of Kenaf/Starch bio-composites used as filler and a matrix. Kenaf was cultivated in Chung-ju in Korea, and the Kenaf/Starch bio-composites were prepared under various conditions of kenaf fiber length (1-5 centimeters); the content of Kenaf fiber was 10%, 20%, 30%, and 40%, and the number of composite layers (one-four). Depending on the formation conditions of Kenaf/Starch composites, the physical properties such as tensile strength, elongation, and the young modulus of the Kenaf/Starch composites were measured. In addition, we measured the SEM cross-section images in order to investigate the interfacial adhesion properties of fractured surfaces. As a result, the tensile strength and elongation of the Kenaf/Starch composites were highest in the molding conditions of a hot press at $120^{\circ}C$, 3000PSI of pressure, and for 30 minute periods. The result of measuring the physical properties of the composites manufactured by varying the content of Kenaf fiber when the content of Kenaf fiber was 30% as well the physical properties of the Kenaf/Starch composite was found desirable. It was found that the physical properties improved with more overlapped layers in the composites manufactured by varying the number of overlapped layers. Through the measuring of the SEM cross-section images, we found that the interfacial adhesion state between the filler and matrix of Kenaf/Starch composite greatly affects the physical properties.

Reduction of Formaldehyde Emission from Particleboardsby Bio-Scavengers

  • Eom, Young-Geun;Kim, Jong-Sung;Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.29-41
    • /
    • 2006
  • This study was to investigate the effect of adding additive as tannin, rice husk and charcoal, for reducing the formaldehyde emission level, on the adhesion properties of urea-formaldehyde (UF) resin for particleboard. We controlled the hot-pressing time, temperature and pressure to determine the bonding strength and formaldehyde emission. Blends of various UF resin/additives (tannin, rice husk and charcoal) compositions were prepared. To determine and compare the effect of additives (tannin, rice husk and charcoal) content, 0, 5, 10 and 15%, by weight of UF resin, were used. $NH_4Cl$ as hardener added. To determine the level of formaldehyde emission, we used the desiccator, perforator and 20 L-small chamber method. The formaldehyde emission level decreased with increased additions of additive (except rice husk). Also, increased hot-pressing time decreased formaldehyde emission level. At a charcoal replacement ratio of only 15%, the formaldehyde emission level is under F ✩ ✩ ✩ ✩ grade (emit < $0.3mg/{\ell}$). Curing of the high tannin additive content in this adhesive system indicated that the bonding strength increased. But, in the case of rice husk and charcoal, the bonding strength was much lower due to the inorganic substance. Furthermore, rice husk was poor in bonding strength as well as formaldehyde emission than tannin and charcoal.

Synthesis of Renewable Resource-derived Furan-based Epoxy Compounds and Their Adhesive Property (재생자원 유래 퓨란계 에폭시 화합물의 합성 및 접착 특성)

  • Lee, Jae-Soung;Lee, Sang-Hyeup;Jeong, Jaewon;Kim, Baekjin;Cho, Jin Ku;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Furan-containing epoxide monomers (8, 9) were designed and synthesized as carbon-neutral, environment-friendly adhesion material. Bicyclic skeleton were constructed using the Diels-Alder reaction of furan and methyl acrylate, both readily accessible starting material from a biomass via bio-refinery process. After reduction of ester functionality, resulting hydroxyl moieties were coupled to epichlorohydrin to provide the epoxy-functionalized furanic monomers (8, 9). The structure of new furanic monomers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy. As UV-curable monomers, basic properties such as UV curing time and the extent of UV curing were evaluated by photo DSC. Photo-curing shrinkages were measured by linear variable differential transformer transducer (LVDT) and the effect of molecular structure on shrinkage was considered. In addition, new synthetic compounds showed the shear strength over 3 MPa when they were photo-cured between polycarbonate plates, which indicates these compounds are feasible to use as photo-curable adhesive materials.