Effect of Vigna angularis on Toll-like Receptor Activation and Pro-inflammatory Cytokine Production

적소두 추출물이 톨유사수용체 활성 및 염증유발 사이토카인의 생성에 미치는 영향

  • Kim, Mi-Hwa (Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeoung, See-Hwa (Natural Bio R&D Center, Sun Bio Tech) ;
  • Lee, Seung-Woong (Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hyun-Kyu (Natural Bio R&D Center, Sun Bio Tech) ;
  • Park, Chan-Sun (Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine & Research Center of Traditional Korean Medicine, Wonkwang University) ;
  • Oh, Hyun-Mee (Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology) ;
  • Rho, Mun-Chual (Bioindustrial Process Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology)
  • 김미화 (한국생명공학연구원 바이오소재연구소 생물산업공정연구센터) ;
  • 정시화 ((주)선바이오텍) ;
  • 이승웅 (한국생명공학연구원 바이오소재연구소 생물산업공정연구센터) ;
  • 김현규 ((주)선바이오텍) ;
  • 박찬선 (한국생명공학연구원 바이오소재연구소 생물산업공정연구센터) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실) ;
  • 오현미 (한국생명공학연구원 바이오소재연구소 생물산업공정연구센터) ;
  • 노문철 (한국생명공학연구원 바이오소재연구소 생물산업공정연구센터)
  • Received : 2012.07.23
  • Accepted : 2012.08.20
  • Published : 2012.08.25

Abstract

The mechanisms of Toll-like receptor (TLR) signaling have been the focus of extensive studies because TLRs are the target of therapeutic intervention on multiple diseases. In this study, we investigated the inhibitory potential of Vigna angularis (azuki bean) on the TLR signaling. The effect of Vigna angularis extract (JSD) on TLR activation was investigated by assessing NF-${\kappa}B$ and AP-1 inducible secreted embryonic alkaline phosphatase (SEAP) activity. JSD significantly inhibited SEAP activity induced by poly I:C (TLR3 ligand) and poly I (TLR7 ligand) in a dose-dependent manner at concentration below 100 ${\mu}g/ml$ with no sign of cytotoxicity. Pretreatment of JSD markedly suppressed mRNA expressions of pro-inflammatory cytokines and adhesive molecules such as TNF-${\alpha}$, IL-6, RANTES, MCP-1 and ICAM-1 induced by TLR ligands. It also diminished the phosphorylation of $I{\kappa}B$ kinase and $I{\kappa}B$, and followed by $I{\kappa}B$-mediated nuclear translocation of p50, p65, and phosphorylation of p38, JNK, and IRF signaling pathway. In conclusion, our results suggest that Vigna angularis has inhibitory activity on TLR-3 and -7 signaling and it can be further developed as a remedy in curing TLR-related multiple diseases.

Keywords

References

  1. Akira, S., Takeda, K., Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology. 2(8):675-680, 2001. https://doi.org/10.1038/90609
  2. Akira, S., Uematsu, S., Takeuchi, O. Pathogen recognition and innate immunity. Cell. 124(4):783-801, 2006. https://doi.org/10.1016/j.cell.2006.02.015
  3. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., Akira, S. A Toll-like receptor recognizes bacterial DNA. Nature. 408(7):740-745, 2000.
  4. Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 410(6832):1099-1103, 2001. https://doi.org/10.1038/35074106
  5. Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413(6857):732-738, 2001. https://doi.org/10.1038/35099560
  6. Lee, J., Mo, J.H., Katakura, K., Alkalay, I., Rucker, A.N., Liu, Y.T., Lee, H.K., Shen, C., Cojocaru, G., Shenouda, S., Kagnoff, M., Eckmann, L., Ben-Neriah, Y., Raz, E. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nature Cell Biology. 8(12):1327-1336, 2006. https://doi.org/10.1038/ncb1500
  7. Takeda, K., Akira, S. Toll-like receptors in innate immunity. International Immunology. 17(1):1-14, 2005.
  8. Rhee, S.H., Hwang, D. Murine Toll-like receptor 4 confers lipopolysaccharide responses as determined by activation of NF kappa B and expression of the induction cyclooxygenase. Journal of Biological Chemistry. 275(44):34035-34040, 2000. https://doi.org/10.1074/jbc.M007386200
  9. Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., Maniatis, T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology. 4(5):491-496, 2003. https://doi.org/10.1038/ni921
  10. Curtiss, L.K., Tobias, P.S. Emerging role of Toll-like receptors in atherosclerosis. Journal of Lipid Research. Supplment(50):S340-S345, 2009.
  11. Zipris, D., Lien, E., Xie, J.X., Greiner, D.L., Mordes, J.P., Rossini, A.A. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. Journal of Immunology. 174(1):131-142, 2005.
  12. Cook, D.N., Pisetsky, D.S., Schwartz, D.A. Toll-like receptors in the pathogenesis of human disease. Nature Immunology. 5(10):975-979, 2004. https://doi.org/10.1038/ni1116
  13. Trompette, A., Divanovic, S., Visintin, A., Blanchard, C., Hegde, R.S., Madan, R., Thorne, P.S., Wills-Karp, M., Gioannini, T.L., Weiss, J.P., Karp, C.L. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature. 457(7229):585-588, 2009. https://doi.org/10.1038/nature07548
  14. Ariga, T., Hamano, M. Radical scavenging action and its mode in procyanidins B-1 and B-3 from azuki beans to peroxyl radicals. Agricultural Biology and Chemistry. 54: 2499-2504, 1990. https://doi.org/10.1271/bbb1961.54.2499
  15. Itoh, T., Umekawa, H., Furuichi, Y. Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion and metastasis of murine B16 melanoma cells. Bioscience, Biotechnology, and Biochemistry. 69(3):448-454, 2005. https://doi.org/10.1271/bbb.69.448
  16. Itoh, T., Furuichi, Y. Lowering serum cholesterol level by feeding a 40% ethanol-eluted fraction from HP-20 resin treated with hot water extract of adzuki beans (Vigna angularis) to rats fed a high-fat cholesterol diet. Nutrition. 25(3):318-321, 2009. https://doi.org/10.1016/j.nut.2008.08.011
  17. Mukai, Y., Sato, S. Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutrition, Metabolism and Cardiovascular Diseases. 19(7):491-497, 2009. https://doi.org/10.1016/j.numecd.2008.09.007
  18. Facchini, F.S., Saylor, K.L. A low-iron-available, polyphenol-enriched, carbohydrate-restricted diet to slow progression of diabetic nephropathy. Diabetes. 52(5):1204-1209, 2003. https://doi.org/10.2337/diabetes.52.5.1204
  19. Mukai, Y., Sato, S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry. 22(1):16-21, 2011. https://doi.org/10.1016/j.jnutbio.2009.11.004
  20. Kawai, T., Akira, S. Signaling to NF-kB by Toll-like receptors. Trends in Molecular Medicine. 13(11):460-469, 2007. https://doi.org/10.1016/j.molmed.2007.09.002
  21. Hoffman, E.S., Smith, R.E., Renaud, R.C. Jr. From the analyst's couch: TLR-targeted therapeutics. Nature review drug discovery. 4(11):879-880, 2005. https://doi.org/10.1038/nrd1880
  22. O'Neill, L.A., Bryant, C.E., Doyle, S.L. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacologicals reviews. 61(2):177-197, 2009.
  23. 李時珍. 本草綱目. 北京. 人民衛生出版社, pp 833-837, 1456-1457, 508-512, 1982.
  24. Ward, J.R., Francis, S.E., Marsden, L., Suddason, T., Lord, G.M., Dower, S.K., Crossman, D.C., Sabroe, I. A central role for monocytes in Toll-like receptor-mediated activation of the vasculature. Immunology. 128(1):58-68, 2009. https://doi.org/10.1111/j.1365-2567.2009.03071.x
  25. Farina, C., Theil, D., Semlinger, B., Hohlfeld, R., Meinl, E. Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. International Immunology. 16(6):799-809, 2004. https://doi.org/10.1093/intimm/dxh083
  26. Sato, S., Mukai, Y., Yamate, J., Kato, J., Kurasaki, M., Hatai, A., Sagai, M. Effect of polyphenol-containing azuki bean (Vigna angularis) extract on blood pressure elevation and macrophage infiltration in the heart and kidney of spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology. 35(1):43-49, 2008. https://doi.org/10.1111/j.1440-1681.2007.04743.x
  27. Bendtzen, K. Interleukin 1, interleukin 6 and tumor necrosis factor in infection, inflammation and immunity. Immunology Letters. 19(3):183-191, 1988. https://doi.org/10.1016/0165-2478(88)90141-1
  28. Charo, I.F., Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. The New England journal of medicine. 354: 610-621, 2006. https://doi.org/10.1056/NEJMra052723