Synthesis of Renewable Resource-derived Furan-based Epoxy Compounds and Their Adhesive Property

재생자원 유래 퓨란계 에폭시 화합물의 합성 및 접착 특성

  • Lee, Jae-Soung (Department of Life Chemistry, Catholic University of Daegu) ;
  • Lee, Sang-Hyeup (Department of Life Chemistry, Catholic University of Daegu) ;
  • Jeong, Jaewon (Green Chemistry & Manufacturing System Division, Green Process R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Baekjin (Green Chemistry & Manufacturing System Division, Green Process R&D Department, Korea Institute of Industrial Technology) ;
  • Cho, Jin Ku (Green Chemistry & Manufacturing System Division, Green Process R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Hyun Joong (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials, Research Team for Biomass-based Bio-Materials, Seoul National University)
  • 이재성 (대구가톨릭대학교 자연대학 생명화학과) ;
  • 이상협 (대구가톨릭대학교 자연대학 생명화학과) ;
  • 정재원 (한국생산기술연구원 청정생산시스템연구본부 그린공정연구부) ;
  • 김백진 (한국생산기술연구원 청정생산시스템연구본부 그린공정연구부) ;
  • 조진구 (한국생산기술연구원 청정생산시스템연구본부 그린공정연구부) ;
  • 김현중 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실, 바이오매스 기반 바이오소재 연구팀)
  • Received : 2010.02.05
  • Accepted : 2010.06.01
  • Published : 2010.06.30

Abstract

Furan-containing epoxide monomers (8, 9) were designed and synthesized as carbon-neutral, environment-friendly adhesion material. Bicyclic skeleton were constructed using the Diels-Alder reaction of furan and methyl acrylate, both readily accessible starting material from a biomass via bio-refinery process. After reduction of ester functionality, resulting hydroxyl moieties were coupled to epichlorohydrin to provide the epoxy-functionalized furanic monomers (8, 9). The structure of new furanic monomers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy. As UV-curable monomers, basic properties such as UV curing time and the extent of UV curing were evaluated by photo DSC. Photo-curing shrinkages were measured by linear variable differential transformer transducer (LVDT) and the effect of molecular structure on shrinkage was considered. In addition, new synthetic compounds showed the shear strength over 3 MPa when they were photo-cured between polycarbonate plates, which indicates these compounds are feasible to use as photo-curable adhesive materials.

탄소 중립형 친환경 접착소재로서, 퓨란기를 함유하는 에폭시 단량체(8, 9)를 설계하고 합성하였다. 바이오매스로부터 바이오-리파이너리 공정을 통해 쉽게 얻을 수 있는 퓨란과 메틸 아크릴레이트를 출발물질로 하여 Diels-Alder 반응을 통하여 이중고리 뼈대를 합성하였다. 이후 에스테르 작용기를 알코올로 환원한 후 에피클로로하이드린과 반응하여 에폭시기를 함유하는 새로운 퓨란계 단량체(8, 9)를 합성하였다. 구조는 $^1H$ and $^{13}C$ NMR으로 확인하였으며, UV 경화형 단량체로서의 기본적인 성질인 광경화 속도 및 광경화율은 Photo-DSC를 사용하여 확인하였다. 또한 선형가변 미분변환기(Linear Variable Differential Transformer transducer LVDT)와 UV Spot curing 장비를 통해 화합물의 경화 수축율을 측정하여 화합물의 분자구조가 경화수축율에 미치는 영향을 살펴보았으며, 각 합성 화합물을 폴리카보네이트 피착재 사이에 도포하고 광경화 후 lab shear test를 수행한 결과 3 MPa 이상의 전단강도를 보임으로써 재생자원 유래 신규 화합물이 접착소재로서 적용이 가능하다는 것을 확인하였다.

Keywords

References

  1. A. Corma, S. Iborra, and A. Velty, Chem. Rev., 107, 2411 (2007). https://doi.org/10.1021/cr050989d
  2. J. N. Chheda, G. W. Huber, and J. A. Dumesic, Angew. Chem. Int. Ed., 46, 7164 (2007). https://doi.org/10.1002/anie.200604274
  3. D. E. Packham, Int. J. Adhes. Adhes., 29, 248 (2009). https://doi.org/10.1016/j.ijadhadh.2008.06.002
  4. Y. Roman-Leshkov, J. N. Chheda, and J. A. Dumesic, Science, 312, 1933 (2006). https://doi.org/10.1126/science.1126337
  5. H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, Science, 316, 1597 (2007). https://doi.org/10.1126/science.1141199
  6. Y. R. Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic, Nature, 447, 982 (2007). https://doi.org/10.1038/nature05923
  7. A. Gandini and M. N. Belgacem, Prog. Polym. Sci., 22, 1203 (1997). https://doi.org/10.1016/S0079-6700(97)00004-X
  8. A. Gandini and M. N. Belgacem, J. Polym. Environ., 10, 105 (2002). https://doi.org/10.1023/A:1021172130748
  9. T. Ishimatsu, U. S. Patent, 6,827,880 (2004).
  10. H. Kotsuki, K. Asao, and H. Ohnishi, Bull. Chem. Soc. Jpn., 57, 3339 (1984). https://doi.org/10.1246/bcsj.57.3339
  11. W. H. Heath, F. Palmieri, J. R. Adams, B. K. Long, J. Chute, T. W. Holcombe, S. Zieren, M. J. Truitt, J. L. White, and C. G. Willson, Macromolecules, 41, 719 (2008). https://doi.org/10.1021/ma702291k
  12. J. Das, T. Vu, D. N. Harris, and M. L. Ogletree, J. Med. Chem., 31, 930 (1988). https://doi.org/10.1021/jm00400a007
  13. K. Okamoto, R. Akiyama, and S. Kobayashi, J. Org. Chem., 69, 2871 (2004). https://doi.org/10.1021/jo0358527
  14. A. B. de Morais, A. B. Pereira, J. P. Teixeira, and N. C. Cavaleiro, Int. J. Adhes. Adhes., 27, 679 (2007). https://doi.org/10.1016/j.ijadhadh.2007.02.002
  15. E. Arceo, P. Marsden, R. G. Bergman, and J. A. Ellman, Chem. Commun., 3357 (2009).