• 제목/요약/키워드: binary sensor network

검색결과 33건 처리시간 0.017초

Applying a sensor energy supply communication scheme to big data opportunistic networks

  • CHEN, Zhigang;WU, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2029-2046
    • /
    • 2016
  • Energy consumption is an important index in mobile ad hoc networks. Data packet transmission increases among nodes, particularly in big data communication. However, nodes may be unable to transmit data packets because of energy over-consumption. Consequently, information may be lost and network communication may block. While opportunistic network is a kind of mobile ad hoc networks, researchers do not focus on energy consumption in opportunistic network communication. This study proposed an effective sensor energy supply scheme that can be applied in opportunistic networks. This scheme considers nodes sensor requests and communication model. In this scheme, nodes do not only accomplish energy supply in communication, but also extend communication time in opportunistic networks. Compared with the Spray and Wait algorithm and the Binary Spray and Wait algorithm in simulations, the proposed scheme extends communication time, increases data packet transmission, and accomplishes energy supply among nodes.

FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현 (Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor)

  • 심윤성;송승준;장선영;정윤호
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.364-372
    • /
    • 2022
  • 본 논문에서는 FMCW(frequency modulated continuous wave) 레이다 센서를 활용한 사람과 사물을 분류하는 시스템 설계 및 구현 결과를 제시한다. 해당 시스템은 다중 객체 탐지를 위한 레이다 센서 신호처리 과정과 객체를 사람 및 사물로 분류하는 딥러닝 과정을 수행한다. 딥러닝의 경우 높은 연산량과 많은 양의 메모리를 요구하기 때문에 경량화가 필수적이다. 따라서 CNN (convolution neural network) 연산을 이진화하여 동작하는 BNN (binary neural network) 구조를 적용하였으며, 실시간 동작을 위해 하드웨어 가속기를 설계하고 FPGA 보드 상에서 구현 및 검증하였다. 성능 평가 및 검증 결과 90.5%의 다중 객체 구분 정확도, CNN 대비 96.87% 감소된 메모리 구현이 가능하며, 총 수행 시간은 5ms로 실시간 동작이 가능함을 확인하였다.

웨어러블 센서 시스템에서의 제어 패킷 전송 결정 기법 (Control Packet Transmission Decision Method for Wearable Sensor Systems)

  • 유다은;김남기
    • 인터넷정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.11-17
    • /
    • 2015
  • 웨어러블 센서 시스템에서 사용하는 일반적인 전송 전력 조절 모델에서는 수신 패킷의 RSSI가 Target RSSI Margin을 벗어나면 전송 전력 조절 알고리즘을 이용하여 새로운 전송 전력을 찾는다. 이 때 싱크 노드가 센서 노드에게 새로이 계산된 전송 전력을 전달하기 위해 제어 패킷을 보낸다. 그런데 무선 네트워크의 채널 상태가 좋지 않을 때는 제어 패킷을 많이 소모하면서도 적정 전송 전력을 찾지 못해 에너지 낭비만 하게 된다. 따라서 본 논문에서 무선 네트워크 채널 환경이 안정적이라고 판단되었을 때 전송 전력을 변경하는 새로운 제어 패킷 전송 결정 기법을 제안한다. 제안되는 기법으로 낭비되는 에너지를 줄일 수 있다. 제안하는 기법을 평가하기 위해 본 논문에서는 Binary 전송 전력 조절 알고리즘에 제어 패킷 전송 결정 기법을 적용하고 그 결과를 분석한다. 채널의 상태를 판단하는 방안을 3가지 제안하여 실험하고 결과를 분석한다.

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

Non-cooperative interference radio localization with binary proximity sensors

  • Wu, Qihui;Yue, Liang;Wang, Long;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3432-3448
    • /
    • 2015
  • Interference can cause serious problems in our daily life. Traditional ways in localizing a target can't work well when it comes to the source of interference for it may take an uncooperative or even resistant attitude towards localization. To tackle this issue, we take the BPSN (Binary Proximity Sensor Networks) and consider a passive way in this paper. No cooperation is needed and it is based on simple sensor node suitable for large-scale deployment. By dividing the sensing field into different patches, when enough patches are formed, good localization accuracy can be achieved with high resolution. Then we analyze the relationship between sensing radius and localization error, we find that in a finite region where edge effect can't be ignored, the trend between sensing radius and localization error is not always consistent. Through theoretical analysis and simulation, we explore to determine the best sensing radius to achieve high localization accuracy.

Implementation of Process System and Intelligent Monitoring Environment using Neural Network

  • Kim, Young-Tak;Kim, Gwan-Hyung;Kim, Soo-Jung;Lee, Sang-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.56-62
    • /
    • 2004
  • This research attempts to suggest a detecting method for cutting position of an object using the neural network, which is one of intellectual methods, and the digital image processing method. The extraction method of object information using the image data obtained from the CCD camera as a replacement of traditional analog sensor thanks to the development of digital image processing. Accordingly, this research determines the threshold value in binary-coding of an input image with the help of image processing method and the neural network for the real-time gray-leveled input image in substitution for lighting; as a result, a specific position is detected from the processed binary-coded image and an actual system designed is suggested as an example.

코드분할 다중방식을 기반으로 하는 선박 상태 모니터링 광섬유 센서 네트워크 (Fiber Sensor Network for Vessel Monitoring based on Code Division Multiple Access)

  • 김영복;이성로;전시욱;박창수
    • 한국통신학회논문지
    • /
    • 제36권10B호
    • /
    • pp.1216-1221
    • /
    • 2011
  • 본 논문은 코드 분할 다중방식을 이용하여 외부로부터 선박에 가해지는 변형 및 온도 변화를 모니터링 할 수 있는 광섬유 브라그 격자 (FBG) 기반의 센서 네트워크를 제안하였다. 선박에 변형이 발생 하거나 온도의 변화가 일어날 때 FBG는 본래 가지고 있는 중심 파장이 이동하며 이는 외부 변형 크기에 비례하여 증가된다. 중심파장의 변화량을 측정함으로써 센서에 가해지는 변형이나 온도의 크기를 알 수 있다. 제안된 센서 네트워크는 코드분할 다중방식을 이용하였으며 광원에서 발생되는 신호를 직접 변조하여, 변조된 신호를 센서로 보내고 센서로부터 돌아오는 신호를 검출하여 상태를 모니터링하게 된다. 또한 슬라이딩 자기상관 기법과, 파장-시간 변환 기법을 이용하여 빠른 센싱과 넓은 범위의 센싱이 가능하도록 하였다.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

A Survey of the Transmission-Power-Control Schemes in Wireless Body-Sensor Networks

  • Lee, Woosik;Kim, Heeyoul;Hong, Min;Kang, Min-Goo;Jeong, Seung Ryul;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1854-1868
    • /
    • 2018
  • A wireless body-sensor network (WBSN) refers to a network-configured environment in which sensors are placed on both the inside and outside of the human body. The sensors are much smaller and the energy is more constrained when compared to traditional wireless sensor network (WSN) environments. The critical nature of the energy-constraint issue in WBSN environments has led to numerous studies on the reduction of energy consumption of WBSN sensors. The transmission-power-control (TPC) technique adjusts the transmission-power level (TPL) of sensors in the WBSN and reduces the energy consumption that occurs during communications. To elaborate, when transmission sensors and reception sensors are placed in various parts of the human body, the transmission sensors regularly send sensor data to the reception sensors. As the reception sensors receive data from the transmission sensors, real-time measurements of the received signal-strength indication (RSSI), which is the value that indicates the channel status, are taken to determine the TPL that suits the current-channel status. This TPL information is then sent back to the transmission sensors. The transmission sensors adjust their current TPL based on the TPL that they receive from the reception sensors. The initial TPC algorithm made linear or binary adjustments using only the information of the current-channel status. However, because various data in the WBSN environment can be utilized to create a more efficient TPC algorithm, many different types of TPC algorithms that combine human movements or fuse TPC with other algorithms have emerged. This paper defines and discusses the design and development process of an efficient TPC algorithm for WBSNs. We will describe the WBSN characteristics, model, and closed-loop mechanism, followed by an examination of recent TPC studies.

CCAJS: A Novel Connect Coverage Algorithm Based on Joint Sensing Model for Wireless Sensor Networks

  • Sun, Zeyu;Yun, Yali;Song, Houbing;Wang, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5014-5034
    • /
    • 2016
  • This paper discusses how to effectively guarantee the coverage and connectivity quality of wireless sensor networks when joint perception model is used for the nodes whose communication ranges are multi-level adjustable in the absence of position information. A Connect Coverage Algorithm Based on Joint Sensing model (CCAJS) is proposed, with which least working nodes are chosen based on probability model ensuring the coverage quality of the network. The algorithm can balance the position distribution of selected working nodes as far as possible, as well as reduce the overall energy consumption of the whole network. The simulation results show that, less working nodes are needed to ensure the coverage quality of networks using joint perception model than using the binary perception model. CCAJS can not only satisfy expected coverage quality and connectivity, but also decrease the energy consumption, thereby prolonging the network lifetime.