• Title/Summary/Keyword: bending deformation

Search Result 1,190, Processing Time 0.031 seconds

Bending analysis of softcore and hardcore functionally graded sandwich beams

  • Hadji, Lazreg;Safa, Abdelkader
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.481-492
    • /
    • 2020
  • A New hyperbolic shear deformation theory is developed for the bending analysis of softcore and hardcore functionally graded sandwich beams. This theory satisfies the equilibrium conditions at the top and bottom faces of the sandwich beam and does not require the shear correction factor. The governing equations are derived from the principle of virtual work. Sandwich beams have functionally graded skins and two types of homogenous core (softcore and hardcore). The material properties of functionally graded skins are graded through the thickness according to the power-law distribution. The Navier solution is used to obtain the closed form solutions for simply supported FGM sandwich beams. The accuracy and effectiveness of proposed theory are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses, and sandwich beam type on the bending responses of functionally graded sandwich beams.

On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams

  • Tagrara, S.H.;Benachour, Abdelkader;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

Bending analysis of power-law sandwich FGM beams under thermal conditions

  • Garg, Aman;Belarbi, Mohamed-Ouejdi;Li, Li;Tounsi, Abdelouahed
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.243-261
    • /
    • 2022
  • Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Analytical and Experimental Study on the Damping of Vibrating Layered Plates Including the Effects of Shear and Thickness Deformation of the Adhesive Layer (접착제층의 전단과 법선변형 효과를 고려한 적층판의 진동감쇠특성 연구)

  • 김재호;박태학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1244-1254
    • /
    • 1992
  • This paper investigates the vibrational damping characteristics of laminated plates composed of elastic, viscoelastic and elastic layers by theoretical and experimental methods. Laminated plates are in cylindrical bending and visco-elastic adhesive layer is assumed as the visco-elastic spring which takes damping effect through both shear and normal deformations. Governing equations oof laminated plates are derived in the form of simultaneous first order differential equations, which account for the longitudinal displacements, rotary inertia and shear deformations of elastic base plate and elastic constraining plate. The numerical calculations of the equations are illustrated by the applications to the cantilever beam in transverse vibration. The results of the solutions agree well with the experimental measurements in general. The damping effects due to the shear and thickness deformations in the adhesives are analyzed and it is shown that for thicker adhesives, the damping effect due to thickness deformation becomes significant and for thinner adhesives, due to shear deformation.

Realistic Cloth Simulation using Plastic Deformation (소성변형특성을 이용한 사실적인 직물 시뮬레이션)

  • Oh Dong-Hoon;Jung Moon-Ryul;Song Chang-Geun;Lee Jong-Wan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.3
    • /
    • pp.208-217
    • /
    • 2006
  • This paper presents a cloth simulation technique that implements plastic deformation. Plasticity is the property that material does not restore completely to the original state once deformed, in contrast to elasticity. We model cloth using a particle model, and posit two kinds of connections between particles, i.e. the sequential connections between immediate neighbors, and the interlaced connections between every other neighbors. The sequential connections represent the compression and tension of cloth, and the interlaced connections the bending in cloth. The sequential connections are modeled by elastic springs, and the interlaced connections by elastic or plastic spring depending on the amount of the current deformation of the connections. Our model is obtained by adding plastic springs to the existing elastic particle model of cloth. Using the new model, we have been able to simulate bending wrinkles, permanently deformed wrinkles, and small wrinkles widely distributed over cloth. When constructing elastic and plastic spring models for sequential and interlaced connections, we took pain to prevent the stiffness matrix of the whole cloth system from being indefinite, in order to help achieve physical stability of the cloth motion equation and to improve the effectiveness of the numerical method.

Bending and Dynamic Characteristics of Antisymmetric Laminated Composite Plates considering a Simplified Higher-Order Shear Deformation (역대칭 복합적층판의 단순화된 고차전단변형을 고려한 휨과 동적 특성)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.601-609
    • /
    • 1997
  • Bending and vibration results for a laminated plate base on a simplified higher-order plate theory with four variables are presented. Assuming a constant in-plane rotation tensor through the thickness in Reddy's higher-order shear deformation theory it is shown that a simpler higher-order theory can be obtained with the reduction of one variable without significant loss in the accuracy. This simple higher-order shear deformation theory is then used for predicting the natural frequencies and deflection of simply-supported laminated composite plates. The results obtained for antisymmetrical laminated composite plates compare favorably with third-order and first-order shear deformation theory. The information presented should be useful to composite-structure designers, to researchers seeking to obtain better correlation between theory and experiment and to numerical analysts in checking out their programs.

  • PDF

Bending analysis of porous microbeams based on the modified strain gradient theory including stretching effect

  • Lemya Hanifi Hachemi Amar;Abdelhakim Kaci;Aicha Bessaim;Mohammed Sid Ahmed Houari;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.225-238
    • /
    • 2024
  • In this paper, a quasi-3D hyperbolic shear deformation theory for the bending responses of a functionally graded (FG) porous micro-beam is based on a modified couple stress theory requiring only one material length scale parameter that can capture the size influence. The model proposed accounts for both shear and normal deformation effects through an illustrative variation of all displacements across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the micro-beam. The effective material properties of the functionally graded micro-beam are assumed to vary in the thickness direction and are estimated using the homogenization method of power law distribution, which is modified to approximate the porous material properties with even and uneven distributions of porosity phases. The equilibrium equations are obtained using the virtual work principle and solved using Navier's technique. The validity of the derived formulation is established by comparing it with the ones available in the literature. Numerical examples are presented to investigate the influences of the power law index, material length scale parameter, beam thickness, and shear and normal deformation effects on the mechanical characteristics of the FG micro-beam. The results demonstrate that the inclusion of the size effects increases the microbeams stiffness, which consequently leads to a reduction in deflections. In contrast, the shear and normal deformation effects are just the opposite.

Shear Behavioral Model based on Shear Deformation Compatibility in Reinforced Concrete Members (전단변형적합조건에 기반한 철근콘크리트 부재의 전단 해석 모델)

  • Kim, Woo;Rhee, Chang-Shin;Jeong, Jae-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.379-388
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. The results may confirm the rationale of the proposed behavioral model.

Three-Point Bending Fatigue Properties of Austenitic 304 Stainless Steel Sheets for Membrane (Membrane용 오스테나이트계 304 스테인리스강 판재의 3점 굽힘피로 특성)

  • Lee Tae-Ho;Kim Sung-Joon;Kim Hyoung-Sik;Kim Cheol-Man;Hong Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.3 s.8
    • /
    • pp.1-8
    • /
    • 1999
  • Three-point bending fatigue properties of austenitic 304 stainless steel sheets were investigated at room temperature and LNG temperature($-162^{\circ}C$) in the strain range from 0.43 to $1.7\%$. The fatigue properties at $-162^{\circ}C$ were superior to those at room temperature due to the higher volume fractions of deformation-induced martensite. The cyclic hardening behavior owing to the deformation- induced martensite transformation was detected in both specimens. In room temperature testing, the mean load amplitude increased steadily with cycles, meaning that cumulative plastic incubation strain was required for martensite transformation. On the contrary, in $-162^{\circ}C$ tested specimen, the mean load amplitude increased rapidly within a few cycles due to the rapid transformation of martensite, and slightly decreased after the maximum is reached probably due to dynamic recovery.

  • PDF