DOI QR코드

DOI QR Code

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints

2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가

  • 김성완 (부산대학교 지진방재연구센터 ) ;
  • 장성진 (부산대학교 지진방재연구센터 ) ;
  • 박동욱 (부산대학교 지진방재연구센터 ) ;
  • 전법규 (부산대학교 지진방재연구센터 )
  • Received : 2023.01.25
  • Accepted : 2023.02.14
  • Published : 2023.04.30

Abstract

The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

배관의 변형 능력을 향상할 수 있는 지진분리이음의 적용은 내진성능을 향상할 수 있는 효과적인 방법이다. 축 방향의 팽창 및 수축, 휨 변형에 대한 능력이 있는 지진분리이음은 변형이 예상되는 위치에 설치하여 배관을 안전하게 보호하기 위한 목적으로 사용된다. 벨로우즈는 유연하며 강성이 낮으므로 큰 변형에 대응하는 능력이 뛰어나기 때문에 지진분리이음으로 사용할 수 있다. 이 연구에서는 2겹 및 3겹 벨로우즈 시험체의 휨 변형에 대한 내진성능과 한계상태를 평가하였다. 내진성능은 지진하중으로 인한 저주기 피로를 고려하기 위하여 점진반복하중을 적용하여 평가하였다. 평가된 내진성능의 한계상태에 대한 여유도를 확인하기 위하여 일정한 진폭의 반복하중을 적용한 실험을 수행하였다. 실험결과 벨로우즈 시험체는 스테인리스 강재로 제작되어 연신율이 높아 3겹 벨로우즈 시험체의 최대 가력 변위에서도 2겹 벨로우즈 시험체는 3 사이클 이내로 저항하는 한계성능을 가짐을 확인할 수 있었다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아수행된 연구임(No. 2021R1A2C1012093).

References

  1. Gantes, C. J., and Melissianos, V. E. (2016), Evaluation of Seismic Protection Methods for Buried Fuel Pipelines Subjected to Fault Rupture, Frontiers in Built Environment, 2(26), 34.
  2. O'Rourke, T. D., Stewart, H. E., Gowdy, T. E., and Pease, J.W. (1991), Lifeline and geotechnical aspects of the 1989 Loma Prieta Earthquake, In Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, 1601-1612.
  3. O'Rourke, T. D., and Palmer, M. C. (1996), Earthquake Performance of Gas Transmission Pipelines, Earthquake Spectra, 12(3), 493-527. https://doi.org/10.1193/1.1585895
  4. Chouw, N. (1995), Effect of the earthquake on 17th of January 1995 on Kobe, In Proceedings of the D-A-CH meeting of the German, Austrian and Swiss Society for Earthquake Engineering and Structural Dynamics, University of Graz, Austria, 135-169.
  5. Tsai, J. S., Jou, L. D., and Lin, S. H. (2000), Damage to Buried Water Supply Pipelines in the Chichi (Taiwan) Earthquake and a Preliminary Evaluation of Seismic Resistance of Pipe Joints, Journal of the Chinese Institute of Engineers, 23(4), 395-408. https://doi.org/10.1080/02533839.2000.9670560
  6. Miyajima, M. (2012), Damage analysis of water supply facilities in the 2011 great east Japan earthquake and tsunami, In Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), 32, 25346-25354.
  7. Edkins, D. J. Orense, R. P., and Henry, R. S. (2021), Seismic Simulation Testing of PVC-U Pipe and Proposed Design Prediction Tool for Joint Performance, Journal of Pipeline Systems Engineering and Practice, 12(2), 04021007.
  8. Germoso, C. Gonzalez, O., and Chinesta, F. (2021), Seismic Vulnerability Assessment of Buried Pipelines: A 3D Parametric Study, Soil Dynamics and Earthquake Engineering, 143, 106627.
  9. ISO 16134:2020 (2020), Earthquake-Resistant and Subsidence-Resistant Design of Ductile Iron Pipelines, International Organization for Standardization (ISO), Geneva, Switzerland.
  10. Lv, Y., Liang, L. R., Li, Y. W., Chen, Y., and Chouw, N. (2021a), Experimental and Finite-element Study of Buried Pipes Connected by Bellow Joint Under Axial Cyclic Loading, Journal of Pipelines Systems Engineering and Practice, 12(1), 04020069.
  11. Lv, Y., Liang, L. R., Li, Y. W., Chen, Y., and Chouw, N. (2021b), Experimental and Finite-element Studies of Buried Pipes Connected by a Bellow Joint Under Cyclic Shear Loading, Journal of Pipelines Systems Engineering and Practice, 12(4), 04021057.
  12. FEMA 461 (2007), Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components, Federal Emergency Management Agency (FEMA), Washington D.C., USA.
  13. Kim, S. W., Jeon, B. G., Cheung, J. H., and Kim, S. D. (2019), Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals, Journal of The Korea Institute for Structural Maintenance and Inspection, 23(6), 77-83.