• Title/Summary/Keyword: behavior algorithm

Search Result 1,492, Processing Time 0.031 seconds

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Asynchronous Behavior Control Algorithm of the Swarm Robot for Surrounding Intruders (군집 로봇의 침입자 포위를 위한 비동기 행동 제어 알고리즘)

  • Kim, Jong-Seon;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.812-818
    • /
    • 2012
  • In this paper, we propose an asynchronous behavior control algorithm of the swarm robot for surrounding intruders when detected an intruder in a surveillance environment. The proposed method is divided into three parts: First, we proposed the method for the modeling of a state of the swarm robot. Second, we proposed an asynchronous behavior control algorithm for the surrounding an intruder by the swarm robot. Third, we proposed a control method for the collision avoidance with the swarm robot. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Autonomous Mobile Robots Navigation Using Artificial Immune Networks and Neural Networks (인공 면역망과 신경회로망을 이용한 자율이동로봇 주행)

  • 이동제;김인식;이민중;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.471-481
    • /
    • 2003
  • The acts of biological immune system are similar to the navigation for autonomous mobile robots under dynamically changing environments. In recent years, many researchers have studied navigation algorithms using artificial immune networks. Conventional artificial immune algorithms consist of an obstacle-avoidance behavior and a goal-reaching behavior. To select a proper action, the navigation algorithm should combine the obstacle-avoidance behavior with the goal-reaching behavior. In this paper, the neural network is employed to combine the behaviors. The neural network is trained with the surrounding information. the outputs of the neural network are proper combinational weights of the behaviors in real-time. Also, a velocity control algorithm is constructed with the artificial immune network. Through a simulation study and experimental results for a autonomous mobile robot, we have shown the validity of the proposed navigation algorithm.

ESTIMATION ALGORITHM FOR PHYSICAL PARAMETERS IN A SHALLOW ARCH

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.723-740
    • /
    • 2021
  • Design and maintenance of large span roof structures require an analysis of their static and dynamic behavior depending on the physical parameters defining the structures. Therefore, it is highly desirable to estimate the parameters from observations of the system. In this paper we study the parameter estimation problem for damped shallow arches. We discuss both symmetric and non-symmetric shapes and loads, and provide theoretical and numerical studies of the model behavior. Our study of the behavior of such structures shows that it is greatly affected by the existence of critical parameters. A small change in such parameters causes a significant change in the model behavior. The presence of the critical parameters makes it challenging to obtain good estimation. We overcome this difficulty by presenting the Parameter Estimation Algorithm that identifies the unknown parameters sequentially. It is shown numerically that the algorithm achieves a successful parameter estimation for models defined by arbitrary parameters, including the critical ones.

A Study on Finding the K Shortest Paths for the Multimodal Public Transportation Network in the Seoul Metropolitan (수도권 복합 대중교통망의 복수 대안 경로 탐색 알고리즘 고찰)

  • Park, Jong-Hoon;Sohn, Moo-Sung;Oh, Suk-Mun;Min, Jae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.607-613
    • /
    • 2011
  • This paper reviews search methods of multiple reasonable paths to implement multimodal public transportation network of Seoul. Such a large scale multimodal public transportation network as Seoul, the computation time of path finding algorithm is a key and the result of path should reflect route choice behavior of public transportation passengers. Search method of alternative path is divided by removing path method and deviation path method. It analyzes previous researches based on the complexity of algorithm for large-scale network. Applying path finding algorithm in public transportation network, transfer and loop constraints must be included to be able to reflect real behavior. It constructs the generalized cost function based on the smart card data to reflect travel behavior of public transportation. To validate the availability of algorithm, experiments conducted with Seoul metropolitan public multimodal transportation network consisted with 22,109 nodes and 215,859 links by using the deviation path method, suitable for large-scale network.

  • PDF

The Filtered-x Least Mean Fourth Algorithm for Active Noise Control and Its Convergence Analysis

  • Lee, Kang-Seung;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.66-73
    • /
    • 1996
  • In this paper, we propose the filtered-x least mean fourth (LMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the filtered-x LMF adaptive filter to active noise control(ANC) requires estimating of the transfer characteristic of the acoustic path between the output and error signal of the adaptive controller. The results of the convergence analysis of the filtered-x LMF algorithm indicates that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

  • PDF

A Calculation of 1 Dimensional Blasting Pressure Uslng the Flux-Corrected Transport Algorithm (Flux-Corrected Transport Algorithm을 적용한 1차원 발파압력산정에 관한 연구)

  • 김문겸;오금호;이필규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.76-83
    • /
    • 1995
  • Estimation of blasting behavior of explosives is prerequisite in the numerical analysis of blasting works. In this study, blasting pressure is estimated by the finite difference method using the Flux-Corrected Transport Algorithm. To formulate the behavior of blasting gas, the mass conservation equation, the moment conservation equation, the energy conservation equation and the ideal gas state equation are used. The simplified species conservation equation is included to simulate the behavior of reacting explosives. To verify the calculation, the Sod's shock tube problem, the strong shock problem and the reacting problem we used. Numerical results show that the shock wave can be captured by means of the FCT algorithm in the reacting and nonreacting states.

  • PDF

The Filtered-x Least Mean Fourth Algorithm for Active Noise Control and Its Convergence Analysis (능동 소음 제어를 위한 Filtered-x 최소평균사승 알고리듬 및 수렴 특성에 관한 연구)

  • 이강승;이재천;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1506-1516
    • /
    • 1995
  • In this paper, we propose the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

  • PDF

An Autonomous Mobile Robot Control Method based on Fuzzy-Artificial Immune Networks and RBFN (퍼지-인공면역망과 RBFN에 의한 자율이동로봇 제어)

  • 오홍민;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.679-688
    • /
    • 2003
  • In order to navigate the mobile robots safely in unknown environments, many researches have been studied to devise navigational algorithms for the mobile robots. In this paper, we propose a navigational algorithm that consists of an obstacle-avoidance behavior module, a goal-approach behavior module and a radial basis function network(RBFN) supervisor. In the obstacle-avoidance behavior module and goal-approach behavior module, the fuzzy-artificial immune networks are used to select a proper steering angle which makes the autonomous mobile robot(AMR) avoid obstacles and approach the given goal. The RBFN supervisor is employed to combine the obstacle-avoidance behavior and goal-approach behavior for reliable and smooth motion. The outputs of the RBFN are proper combinational weights for the behavior modules and velocity to steer the AMR appropriately. Some simulations and experiments have been conducted to confirm the validity of the proposed navigational algorithm.