• Title/Summary/Keyword: bed sediment

Search Result 328, Processing Time 0.025 seconds

Numerical analysis on erosion process of replenished sediment on rock bed

  • Takebayashi, Hiroshi;Yoshiiku, Musashi;Shiuchi, Makoto;Yamashita, Masahiro;Nakata, Yasusuke
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.17-17
    • /
    • 2011
  • As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. However, most of them can treat movable bed only and cannot be applied to the bed deformation process of sediment on rocks. If the friction angle between the sediment and the bed surface is assumed to be the same as the friction angle between the sediment and the sediment, sediment transport rate must be smaller without sediment deposition layer on the rocks. As a result, the reproduced bed geometry is affected very well. In this study, non-equilibrium transport process of non-cohesive sediment on rigid bed is introduced into the horizontal two dimensional bed deformation model and the model is applied to the erosion process of replenished sediment on rock in the Nakagawa, Japan. Here, the Japanese largest scale sediment augmentation has been performed in the Nakagawa. The results show that the amounts of the eroded sediment and the remained sediment reproduced by the developed numerical model are $56300m^3$ and $26800m^3$, respectively. On the other hand, the amounts of the eroded sediment and the remained sediment measured in the field after the floods are $56600m^3$ and $26500m^3$, respectively. The difference between the model and field data is very small. Furthermore, the bed geometry of the replenished sediment after the floods reproduced by the developed model has a good agreement with the measured bed geometry after the floods. These results indicate that the developed model is able to simulate the erosion process of replenished sediment on rocks very well. Furthermore, the erosion speed of the replenished sediment during the decreasing process of the water discharge is faster than that during the increasing process of the water discharge. The replenished sediment is eroded well, when the top of the replenished sediment is covered by the water. In general, water surface level is kept to be high during the decreasing process of the discharge during floods, because water surface level at the downstream end is high. Hence, it is considered that the high water surface level during the decreasing process of the water discharge affects on the fast erosion of the replenished sediment.

  • PDF

The application levee material in the bed sediment of Nakdong River (낙동강 하상토의 제방재료 활용방안)

  • Choi, Gye-Woon;Lee, Seung-Woo;Lee, Ho-Sun;Lee, Byung-Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1576-1580
    • /
    • 2006
  • The destruction of river and damage caused by flood are suddenly increasing due to the abnormal climate. In the investigation result about the damage, approximate 52% of the destruction of embankment are caused by earth work. Moreover, to recover conveyance of relief channel, bed sediment is dredged about 198 millions $m^3$ with 'the project of bed dredging'. So, the concern for bed sediment is the more increasing, the requiring high quality material for banking and the way for application of bed sediment are also the more increasing. In this paper, properties of bed sediment were analyzed through sedimentary mechanism analysis. Moreover, possibility to build embankment with bed sediment in 6 points which is in catchment of the Nak-dong river was also analyzed. At 6 points, which were selected to survey easily, sediment discharge was analyzed with formula. Moreover, size and permeability were analyzed and the feasibility for material of embankment was proposed. If bed sediment wasn't proper, complementary measures were proposed.

  • PDF

Ratio of Bedload to Total Sediment Load in Gravel-bed Rivers (자갈하천 총유사량에 대한 소류사의 비율)

  • Park, Sang Doeg
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.15-29
    • /
    • 2018
  • The sediment transport process in a river reflects the process of geomorphological change in the watershed, influencesthe river bed variation and the river channel migration, and is a parametric phenomenon that exhibits a dynamic self-adjusting process. Sediment load is divided into bedload and suspended load depending on the dominant mechanism. Quantitative sediment load is important information for solving river problems. Because it is difficult and time consuming to measure bedload, compared to that ofsuspended load, data on the sediment transport load and the research required for the gravel-bed rivers are insufficient. This study is to analyze the ratio of the bedload to the total sediment load in gravel-bed rivers. The sediment load ratio in gravel-bed rivers increases with the flow rate per unit width, and the rate of the bedload varies more rapidly than the suspended load. The sediment transport efficiency coefficient has been affected by the ratio of the flow depth to the mean diameter of particles and has been dependent on the shear velocity Reynolds number. So $A^{\ast}$ and $B^{\ast}$ are introduced to compensate for the uncertainties such as bed materials, sediment transport, and flow velocity distribution, and the coefficient of bedload ratio has been presented. For the sediment load data in experimental channels and rivers, A* was 3.1. The dominant variables of $B^{\ast}$ were $u_*d_m/{\nu}$ in the gravel-bed and h/dm in the sand-bed. When $B^{\ast}$ the is the same, in the experimental channels the coefficient of bedload ratio was affected by the bed forms, but in the rivers it was of little difference between the gravel-bed and sand-bed.

Examination of Vertical 1D Sediment Resuspension and Diffusion Model Using Field Data Collected in the Saemangeum Area (새만금 해역에서 연직 1차원 퇴적물 확산모델 검증)

  • Lee, Guan-Hong;Lee, Hee-Jun
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.537-543
    • /
    • 2008
  • The sediment resuspension and diffusion model is an integral part of a sediment transport and morphologic change model. We examined a vertical one-dimensional sediment resuspension and diffusion model using field data collected at about 10-m depth off the Saemangeun $4^{th}$ dike. The field data include waves, currents and suspended sediment concentration near the bed for about a day in May, 2007. The suspended sediment concentration obtained from the 1D model overestimated the observation about two orders of magnitude with single grain size and multiple grain sizes. The incorporation of the bed armoring effect, which adjusts the amount of suspended sediment with the available bed sediment, improved the agreement between the model and observation within a factor of two.

Incipient motion criteria of uniform gravel bed under falling spheres in open channel flow

  • Khe, Sok An;Park, Sang Deog;Jeon, Woo Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.149-149
    • /
    • 2018
  • Prediction on initial motion of sediment is crucial to evaluate sediment transport and channel stability. The condition of incipient movement of sediment is characterized by bed shear stress, which is generated from force of moving water against the bed of the channel, and by critical shear stress, which depends on force resisting motion of sediment due to the submerged weight of the grains. When the bed shear stress exceeds the critical shear stress, sediment particles begin rolling and sliding at isolated and random locations. In Mountain River, debris flow frequently occurs due to heavy rainfall and can lead some natural stones from mountain slope into the bed river. This phenomenon could add additional forces to sediment transport system in the bed of river and also affect or change direction and magnitude of sediment movement. In this paper, evaluations on incipient motion of uniform coarse gravel under falling spheres impacts using small scale flume channel were conducted. The drag force of falling spheres due to water flow and length movement of falling spheres were investigated. The experiments were carried out in flume channel made by glass wall and steel floor with 12 m long, 0.6 m wide, and 0.6 m deep. The bed slopes were selected with the range from 0.7% to 1.5%. The thickness of granular layer was at least 3 times of diameter of granular particle to meet grain placement condition. The sphere diameters were chosen to be 4cm, 6 cm, 8 cm, 10 cm. The spheres were fallen in to the bed channel for critical condition and under critical condition of motion particle. Based on the experimental results, the Shields curve of particles Reynold number and dimensionless critical shear stress were plotted. The relationship between with drag force and the length movement of spheres were plotted. The pathways of the bed material Under the impact of spheres falling were analyzed.

  • PDF

The Movable Hydraulic Model Test for Exchange of Intake Weir in the Nakdong River (낙동강 취수보개체를 위한 이동상 수리모형실험)

  • 김성원
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • In this study, the movable bed model testing was carried out so as to analyze bed profile changes including predicting scouring and deposition of bed profile and to solve hydraulic problems affecting with bed and both-bank between upstream and downstream of intake weir in the Nakdong river channel. The movable bed model testing consists of fundamental test, movable model test and numerical analysis method respectively. The fundamental test was enforced to analyze relationship of discharge and sediment load in the tilting flume. When the movable model test was worked, it was shown that sediment budget between input sediment load and output sediment load was balanced exactly. As a result of movable model test, it was presented that scouring and deposition changes in quantities between the upstream and downstream of modification weir were less than those of nature and planning weir. Finally, numerical analysis method was operated by 1-dimensional bed profile changes model ; HEC-6 model so as to complement unsolving hard problems during movable model test. So, modification weir will sustained the stable bed profile changes than any other weirs in the study channel.

  • PDF

Construction and Monitoring of Test bed in Urban Sediment Disaster Prevention Technology (도심지 토사재해 방어기술 테스트베드 구축 및 모니터링 연구)

  • Lee, Jung-min;Kim, Hyo-Jin;Lee, Yoon-Sang;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • In this study, sediment transfer and precipitation analysis of the test bed watershed was conducted through the model for the application and practical use of the urban sediment disaster prevention technology, and used this as an aid to design to secure reliability. In addition, conducted the test bed monitoring with the defense technology, analyzed the effect, and established the maintenance plan. Analyzed the change of soil deposition volume through arbitrary slope adjustment for the currently installed stormwater conduit of the test bed watershed. As a result, it is important to reduce the total sedimentation amount in the adjustment of the slope of the entire pipeline, but it is important that the sedimentation depth of each sediment does not rise to such a degree as to threaten the performance of the pipeline. Considering these matters, it is necessary to design the pipeline to prevent the clogging of the soil from the viewpoint of the reliability of the entire pipeline. The sediment disaster defense technology test bed is divided into a new city and an old city, and old city test bed is under construction. The result obtained through the monitoring of the test bed in the new city, sediment disasters such as debris can delay the time to reach the downtown area, and it is possible to secure the golden time, such as evacuation and rescue through the warning system. Also, the maintenance of the test bed application was suggested. Continuous and systematic monitoring is required for securing the reliability of element technology and successful commercialization.

A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields (파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델)

  • Lee, Jong Sup;Yoon, Eun Chan;Park, Seok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.311-319
    • /
    • 2006
  • A bed level change model(SED-FLUX) is introduced based on the realistic sediment transport process including bed load and suspended load behaviours at the bottom boundary layer. The model SED-FLUX includes wave module, hydrodynamic module and sediment transport and diffusion module that calculate suspended sediment concentration, net sediment erosion flux($Q_s$) and bed load flux. Bed load transport rate is evaluated by the van Rijn's TRANSPOR program which has been verified in wave-current fields. The net sediment erosion flux($Q_s$) at the bottom is evaluated as a source/sink term in the numerical sediment diffusion model where the suspended sediment concentration becomes a verification parameter of the $Q_s$. Bed level change module calculates a bed level change amount(${\Delta}h_{i,j}$) and updates a bed level. For the model verification the limit depth of the bed load transport is compared with the field experiment data and some formula on the threshold depth for the bed load movement by waves and currents. This model is applied to the beach profile changes by waves, then the model shows a clear erosion and accumulation profile according to the incident wave characteristics. Finally the beach evolution by waves and wave-induced currents behind the offshore breakwater is calculated, where the model shows a tombolo formation in the landward area of the breakwater.

Numerical Model Calibration and Verification for Riverbed Change Prediction (하천의 하상변동 예측을 위한 수치모형의 보정 및 검증에 관한 연구)

  • Kim, Gwon-Han;Ji, Un;Yeo, Woon-Kwang;Jeong, Won-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1739-1744
    • /
    • 2010
  • The calculation method using the numerical model developed is currently one of the mose required method to predict sediment transport and bed changes in the rivers. Specially, it is real condition that is applying as it is a single sediment transport equation and sediment transport mode mostly without verification process with field data. The sensitivity analysis and calibration process considering the different sediment transport equations and sediment transport modes should be performed for the accurate bed change prediction of the specified study reach using the a model. Through its process, the optimum sediment transport equation and mode for the study reach should be defined. In this study, bed changes for the actual river are computed using the CCHE2D model allowed to select various sediment transport equations and modes. The bed change sensitivity analysis with different ranges of river flow discharge through its process, the optimum sediment transport equation and mode for the study reach should be defined. The bed change simulation with the actual hydraulic condition and the modeling results are compared with the field survey results.

  • PDF

A Study of Sediment Discharge and Bed Change Characteristics of the Local Rivers in Korea (국내 지방하천의 유사량과 하상변동 특성에 관한 연구)

  • Son, Hogeun;Lee, Jungsik;Shin, Shachul;Moon, Changgeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.31-39
    • /
    • 2014
  • The objective of this study is to suggest the proper sediment transport equation and short and long-term bed change for planning and implementing the river management in Korea. To analyze total sediment discharge and short and long-term bed change, existing sediment transport equations, HEC-RAS 4.1 and CCHE2D numerical models were applied in urban and mountainous rivers. The results of this study are as followings; Firstly, the modified Einstein equation showed the most appropriate result for the estimation of total sediment discharge in the local rivers. Secondly, The stage-discharge relation curve and the discharge-total sediment discharge relation curve were suggested to examine the characteristics of river bed change. Finally, it is founded that river bed change of mountainous river has occurred greater than that of the urban river, and the river bed of urban river now tends to be stabilized on the whole.