• Title/Summary/Keyword: bearing capacity of foundation

Search Result 397, Processing Time 0.03 seconds

A Study on Shell Foundation Behaviour in Cohesionless Soil (사질토 지반에서 Shell 기초 거동에 대한 연구)

  • Kim, Sang-Hwan;Jung, Yong-Su;Ko, Dong-Pil;Kang, So-Ra
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.51-60
    • /
    • 2008
  • In this paper, the behaviour of shell foundation was studied. In the theoretical program, the general shallow foundation theories and failure mechanism developed by Terzaghi, Mayerhof and others were reviewed and compared. In the numerical study, the 2 and 3 dimensional FEM simulations were carried out using an uncoupled-analysis approach. The results obtained from the model test show that the bearing capacity of shell foundation was about 25% to 30% larger than that of general foundation. Due to the cases of shell angle, the maximum bearing capacity of shell foundation shows when the shell angle of foundation was $60^{\circ}$. In addition, even if the shell foundation has various advantages compared with the general foundations as described above, the practical verifications in full scale size will be necessary to use in the field and will be helpful in the technical development of other special foundations.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Analysis of the Bearing Behavior of a Tripod Bucket Installed in Clay (점성토 지반에 설치된 Tripod 버켓기초의 지지거동 분석)

  • Kim, Sung-Ryul;eong, Jae-Uk;Oh, Myounghak;Kwon, Osoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.105-111
    • /
    • 2012
  • Bucket foundations, which are used in the foundations of offshore wind turbines, should be able to withstand large amounts of horizontal and moment loads. Tripod bucket foundation, which combines three single buckets, has been used to increase horizontal and moment capacities. This study performed numerical analysis using ABAQUS (2010), to analyze the group effect and the bearing capacity of a tripod bucket in clay. Parametric studies were performed varying the bucket spacing ratio S/D (S=spacing between the centers of the bucket and the tower; D=diameter of the bucket) and depth ratio L/D (L=embedded length of skirt). The applied constitutive models were a linear elastic perfectly plastic model with Tresca yield criteria for normally consolidated clay and an elastic model for buckets. Loading in the vertical, horizontal, and moment directions was simulated with an increase in each movement at a reference point. The bearing behavior and the capacities of a single and a tripod bucket were compared. Capacity evaluation method of the tripod bucket was suggested using the capacity of a single bucket.

Bearing Capacity of Foundation on Sand Overlying Soft Clay (연약한 점토층 위에 놓인 모래지반의 극한지지력에 관한 연구)

  • 민덕기;김효상
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.29-41
    • /
    • 1999
  • This Paper applied a simple strength parameter averaging method to double layered systems consisting of the strong sand layer overlying the soft clay deposit. This study derived a formula which defines a critical depth as the strength parameters, and used the correction parameter, $\alpha$ to reduce an error of the strength parameter averaging method. The results of the method were presented in the form of dimensionless charts and were compared with the results of several solutions proposed by Satyanarayana & Grag, Sreenivasulu, and Meyerhof & Hanna. The results of the proposed method coincided with the method of Meyerhof & Hanna and the results obtained from FLAC. But the Satyanarayana & Grag method and the Sreenivasulu method overestimated the bearing capacity. Consequently, the bearing capacity of foundation on sand layer overlying soft clay layer can be approximately estimated by using the proposed dimensionless charts.

  • PDF

Test results confirm the bridge foundation bearing capacity due to construction costs case (교량기초의 지지력확인 시험 결과에 따른 건설비 절감사례)

  • Lee, Soo-Gon;Woo, Jae-Gyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1065-1072
    • /
    • 2010
  • Case studies published in Korea versus the low ground fault is applied on the bridge based on theory or experience in the design of pile bearing capacity by the value of the expression is designed to conduct field tests Disclosure Load bearing capacity value, the result of applying a reasonable construction cost savings of approximately 10 eokyeowon Has, in the design of site investigation was insufficient to require additional efforts. Apply the appropriate value from the extra support in the design of accurate ground survey and air speed to cut the budget and social technology can ensure the reliability was unknown.

  • PDF

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Bearing Capacity Factor of Shallow Foundation in Undrnined Clay Using the Diagrammatic Upper and Lower Bound Methods (도식적 상.하계법을 이용한 비배수 점토지반에서 얕은 기초의 지지력계수)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.45-59
    • /
    • 2011
  • This study introduces the diagrammatic Upper and Lower Bound (UB and LB) methods theoretically in order to derive the bearing capacity factor, $N_c$ in undrained clay and to compare with Prandtl's exact solution (1921). As a result of the theoretical study, an exact solution comes out when the UB and LB solutions are the same. In addition, the finite element analyses show that the failure loads approach to the bearing capacity factor of 5.14. Results of the FEA significantly depend on the finite element type, a number of elements, and a number of increments. From this study the exact solution defines that solutions from UB and LB are the same. However, this situation is very difficult to process, so we can confirm the exact solution as a range between UB and LB solutions.

An Experimental Study on the Increase of the Bearing Capacity on Sandy Ground due to Micropile Reinforcement (마이크로파일로 보강된 모래지반의 지지력 증가효과에 관한 실험적 연구)

  • 김정동;임종철;이태형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.411-416
    • /
    • 2003
  • As rapid industrialization continues in these days, construction in the down town areas increases. Since constructions are performed around old and existing structures, the need to provide reinforcements to protect the existing structures from collapse and damage arises. Furthermore, if the construction is to take place in the down town area, difficult work space and damage caused by noise, vibration and collapse of structure can't be ignored. Among the remedial measures available today, micropile reinforcement is considered the best method to remedy these problems. But up to the present the characteristics of micropiles and ground behaviour has not been proven and no standard design is not yet available. Therefore, most design are performed based on previous experiences. In this study, the difference in the bearing capacity with changing reinforcement angle, space and sphere around foundation was monitored. These results were induced to broaden heighten the limits of micropile application.

  • PDF

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

Numerical Investigation on Load Supporting Mechanism of a Pile Constructed above Underground Cavity (공동이 존재하는 암반에 시공된 말뚝기초의 하중지지 메카니즘에 관한 수치해석 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.5-16
    • /
    • 2011
  • This paper presents the results of a three-dimensional finite element analysis on load supporting mechanism of pile constructed above underground cavity in limestone rock formation. Considering a wide range of cavity conditions, the behavior of pile was studied using the bearing capacity, rock yielding pattern, stress distribution and deformation of pile head and the cavity. The results indicate that the load transfer mechanism of pile, rock yielding pattern and the reduction of bearing capacity of pile significantly vary with the location, size and length of cavity. Based on the results, graphical solutions defining the reduction of the bearing capacity with specific cavity conditions were suggested.