• Title/Summary/Keyword: beam theories

Search Result 189, Processing Time 0.026 seconds

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

A hybrid conventional computer simulation via GDQEM and Newmark-beta techniques for dynamic modeling of a rotating micro nth-order system

  • Fan, Linyuan;Zhang, Xu;Zhao, Xiaoyang
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.167-183
    • /
    • 2022
  • In this paper, the free and forced vibration analysis of rotating cantilever nanoscale cylindrical beams and tubes is investigated under the external dynamic load to examine the nonlocal effect. A couple of nonlocal strain gradient theories with different beams and tubes theories, involving the Euler-Bernoulli, Timoshenko, Reddy beam theory along with the higher-order tube theory, are assumed to the mathematic model of governing equations employing the Hamilton principle in order to derive the nonlocal governing equations related to the local and accurate nonlocal boundary conditions. The two-dimensional functional graded material (2D-FGM), made by the axially functionally graded (AFG) in conjunction with the porosity distribution in the radial direction, is considered material modeling. Finally, the derived Partial Differential Equations (PDE) are solved via a couple of the generalized differential quadrature element methods (GDQEM) with the Newmark-beta techniques for the time-dependent results. It is indicated that the boundary conditions equations play a crucial task in responding to nonlocal effects for the cantilever structures.

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj;Muzamal Hussain;Mohamed A. Khadimallah;Muhammad Safeer;S.R. Mahmoud;Zafer Iqbal;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi;Manzoor Ahmad
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.171-178
    • /
    • 2023
  • Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

Direct strength measurement of Timoshenko-beam model: Vibration analysis of double walled carbon nanotubes

  • Ghandourah, Emad;Hussain, Muzamal;Thobiani, Faisal Al;Hefni, Mohammed;Alghamdi, Sami
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.77-83
    • /
    • 2022
  • In the last ten years, many researchers have studied the vibrations of carbon nanotubes using different beam theories. The nano- and micro-scale systems have wavy shape and there is a demand for a powerful tool to mathematically model waviness of those systems. In accordance with the above mentioned lack for the modeling of the waviness of the curved tiny structure, a novel approach is employed by implementing the Timoshenko-beam model. Owing to the small size of the micro beam, these structures are very appropriate for designing small instruments. The vibrations of double walled carbon nanotubes (DWCNTs) are developed using the Timoshenko-beam model in conjunction with the wave propagation approach under support conditions to calculate the fundamental frequencies of DWCNTs. The frequency influence is observed with different parameters. Vibrations of the double walled carbon nanotubes are investigated in order to find their vibrational modes with frequencies. The aspect ratios and half axial wave mode with small length are investigated. It is calculated that these frequencies and ratios are dependent upon the length scale and aspect ratio.

Deformations of Cantilever Strips and Beam with Small Elastic Strains (작은 탄성 변형률 하의 고정-자유 지지된 스트립과 보의 변형)

  • 호광수;박기철;임세영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.572-582
    • /
    • 1989
  • Elastic deformations of an infinitely long strip and a beam loaded by uniform pressure upon their upper surfaces, with the fixed-free end dondition, are considered within the range of small strains. All local governing equations are satisfied up to first order in strains, and to take into account the higher order terms neglected in the local governing equations, the overall equilibrium is imposed exactly up to the leading order. The success of the approach relies upon the semi-inverse method and the decomposition of deformations in which the classical linear theory guides the solution. The solution bridges the gap between the two extremes-the classical solutions valid only for infinitesimal deformations and the solutions form the technical theories for deformations with large rotations. The solutions may be used to confirm the technical theories and to verify numerical solutions obtained from finite element analysis.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Selection of design variables in the Sandwich Beam for load resistance (하중에 대한 샌드위치보의 디자인 변수 선택)

  • Kim, Jongman;Hwang, Hyo-Kune;Lee, Jin-Woo;Kim, Wae-Yeule
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.198-201
    • /
    • 2002
  • It has been well-blown that sandwich structures are efficient to resist bending loads by increasing the moment of inertia of the panel. However, the accurate theoretical prediction of failure load and its optimization of sandwich beams for strength under concentrated loads were so complicated. Moreover, the appropriate selection of the variables, such as face thickness, core density and core thickness of the sandwich beam with many theories has continuously researched to satisfy for the given strength to weight structural requirement. There will be interesting to investigate the effect of those variables with its optimization for the load resistance.

  • PDF

Finite element implementation of a steel-concrete bond law for nonlinear analysis of beam-column joints subjected to earthquake type loading

  • Fleury, F.;Reynouard, J.M.;Merabet, O.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 1999
  • Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.

Free vibration analysis of damaged composite beams

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.79-92
    • /
    • 2015
  • In this study, free vibration analyses of symmetric laminated cantilever and simply supported damaged composite beams are investigated by using finite element method (FEM). Free vibration responses of damaged beams are examined using Euler Bernoulli beam and classical lamination theories. A computer code is developed by using MATLAB software to determine the natural frequencies of a damaged beam. The local damage zone is assumed to be on the surface lamina of the beam by broken fibers after impact. The damaged zone is modeled as a unidirectional discontinuous lamina with $0^{\circ}$ orientations in this study. Fiber volume fraction ($v_f$), fiber aspect ratio ($L_f/d_f$), damage length ($L_D$) and its location (${\lambda}/L$), fiber orientation and stacking sequence parameters effects on natural frequencies are investigated. These parameters are affected the natural frequency values significantly.

Design of Single-Input Single-Output Positive Position Feedback Controller For the Control of Multiple Modes (다중모드제어를 위한 단일 입출력 양변위 되먹임제어기의 설계)

  • Jeong, Moon-San;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.310-313
    • /
    • 2005
  • This paper is concerned with the active vibration control of beam equipped with piezoceramic sensors and actuators. The single-input and single-output positive position feedback controller is considered as an active vibration controller for the beam. The proposed single-input and single-output positive position feedback controller can cope with many modes of interest by summing each positive position feedback controller designed for each mode. In this paper, theoretical formulation is first explained in detail. We discuss how to design the single-input and single-output positive position feedback controller for a target structure by considering Euler-Bemoulli beam. It is found that the theories developed in this study are capable of predicting the control system characteristics and its performance.

  • PDF