• Title/Summary/Keyword: beam position

Search Result 952, Processing Time 0.026 seconds

Motion analysis of a Translating Flexible Beam Carrying a Moving Mass (이동부하를 가지고 병진운동하는 유연보의 운동 해석)

  • Park, Sang-Deok;Chung, Wan-Kyun;Youm, Young-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.204-212
    • /
    • 1999
  • In this paper, the vibrational motion of a flexible beam clamped on a translating base and carrying a moving mass is investigated. The equations of motion which describe the total dynamics of the beam-mass-cart system are derived and the coupled dynamic equations are solved by unconstrained modal analysis. In modal analysis, the exact normal mode solutions corresponding to the eigenfrequencies for the position of the moving mass and the ratios of the mass of the flexible beam, the moving mass and the base cart are used. Proper transformations of the time solutions between the normal modes for a position and those for the next position of the moving mass are also adopted. Numerical simulations are carried out to obtain the open-loop responses of the system in tracking the pre-designed path of the moving mass.

  • PDF

A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach (철도객차용 크로스 빔의 경량화 설계에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

Optical Autofocus System for Wafer Steppers using PSD as the Position Sensor (PSD를 이용한 광학적 자동 촛점장치)

  • 박기수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.157-161
    • /
    • 1993
  • An optical autofocus system for a DUV KrF excimer laser wafer stepper was developed by using the PSD (Position Sensitive Detector) as the position sensor. The laser beam was incident on the surface of wafer and the reflected beam was magnified optically by a lens. And the beam was directed onto the surface of PSD by a mirror system. The spatial resolution of the autofocus system was found to be $0.03{\mu}m$.

  • PDF

Beam Crossectional Monitor of Cyclotron using VXI Bus (VXI Bus를 이용한 싸이클로트론의 빔 단면 표시장치)

  • Cho, Young-Ho;Ahn, Doo-Soo;Lee, Han-Seok;Kim, Yu-Seok;Chai, Jong-Seo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.442-444
    • /
    • 1998
  • We made the beam crosssectional monitor system which was possible to display the ion beam crosssection extracted from accelerator on personal computer monitor. Previous beam profile monitor system could detect the central beam position with limited low beam current, but this developed beam crosssectional monitor system could operate at the relatively higher beam current. In addition we realized the real time data taking system by adopting the VXI system for beam size, central position and crosssection.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Dynamic Behavior of Timoshenko Beam with Crack and Moving Mass (크랙과 이동질량이 존재하는 티모센코 보의 동특성)

  • Yoon Han Ik;Choi Chang Soo;Son In Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.143-151
    • /
    • 2005
  • This paper study the effect of open cracks on the dynamic behavior of simply supported Timoshenko beam with a moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. Using Lagrange's equation derives the equation of motion. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by the applying fundamental fracture mechanics theory. As the depth of the crack is increased the mid-span deflection of the Timoshenko beam with the moving mass is increased. And the effects of depth and position of crack on dynamic behavior of simply supported beam with moving mass are discussed.

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

Determination of Proton Beam Position Based on Prompt Gamma Ray Detection (즉발감마선을 이용한 양성자 빔 위치 측정에 관한 연구)

  • Seo, Kyu-Seok;Kim, Jong-Won;Kim, Chan-Hyeong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.69-71
    • /
    • 2004
  • The proton therapy of radiation therapy methods using Bragg Peak which is proton beam's characteristic dose distribution can give a normal tissue lower dose than cancer, comparing with the former existing radiation therapy methods. For exact treatment and patient' safety, we need to know proton beam's position in body, but a proton beam completely stops at treatment region and proton beam's range is uncertainly made by the variety of organs having each different density, so we aren't able to find a proton beam' position by suitable methods yet. With Monte Carlo Computing Method, as a result that we had simulated prompt gamma detection system using correlation of proton beam's absorbed dose distribution about water and prompt gamma distribution by nuclear interaction occurred by collisions of proton and water's hydrogen atoms, we could confirm that a proton beam's position was able to detect by using simulated prompt gamma detection system in body on the real-time

  • PDF

Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

  • Wei, Shaoqing;Zhang, Zhan;Lee, Sangjin;Kim, Do Gyun;Kim, Jang Youl
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.40-43
    • /
    • 2016
  • Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in $Opera^{TM}$. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With $Opera^{TM}$ and $Matlab^{TM}$ programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.

Assessment of the relationship between the mandibular third molar and the mandibular canal using panoramic radiograph and cone beam computed tomography (파노라마 방사선사진과 cone beam CT에서 제3대구치와 하악관의 관계 평가)

  • Jung, Yun-Hoa;Nah, Kyung-Soo;Cho, Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.163-167
    • /
    • 2008
  • Purpose : The purpose of this study is to evaluate the position of the mandibular canal in relation to the mandibular third molar by cone beam CT in cases showing a close relationship between the third molar and the mandibular canal on the panoramic radiograph. Materials and Methods : The panoramic images and cone beam CT scans of 87 impacted mandibular third molars in 60 patients were evaluated to assess the tooth relationship to the mandibular canal. The clearness of the canal wall and the vertical depth of the lower third molar were evaluated on panoramic radiographs. The lower third molars were assessed using cone beam CT to determine the proximity and position of the canal relative to the roots. Results : In the 66 cases where the canal wall was unclear on the panoramic radiographs, 58 (87.9%) of the third molars had contact between the canal and root; 34 (51.5%) canals were showed an inferior position and 22 (33.3%) showed a linguoinferior position on cone beam CT. Conclusion : Interruption of the canal wall on panoramic radiographs was highly predictive of contact between the mandibular canal and the third molar. Cross sectional CT may be indicated for localization of the mandibular canal in such cases.

  • PDF