• 제목/요약/키워드: base Motion

검색결과 562건 처리시간 0.051초

Sensitivity analysis for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.309-323
    • /
    • 2006
  • In this paper, seismic response of a free-standing ship located in a dry dock and supported by an arrangement of n keel blocks due to base excitation is addressed. Formulation of the problem including derivation of governing equations in various modes of motion as well as transition conditions from one mode to another is given in Moghaddasi and Bargi (2006) by same authors. On the base of numerical solution for presented formulation, several numbers of analyses are conducted to study sensitivity of system's responses to some major contributing parameters. These parameters include friction coefficients between contacting surfaces, block dimensions, peak ground acceleration, and the magnitude of vertical ground acceleration. Finally, performance of a system with usual parameters normally encountered in design is investigated.

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

하드디스크 드라이브 소음 예측을 위한 진동 음향 연계 해석 (Vibro-acoustic Analysis for Predicting the Noise of HDD)

  • 이상희;고상철;김준태;강성우;한윤식;황태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2001
  • The structure of hard disk drive(HDD) is excited by dynamic motion of a disk-spindle motor, and it makes sound noise. Therefore, the cover and the base of HDD should be designed to reduce noise and vibration induced by spindle motor. The prediction technique of sound pressure level(SPL) of a given structural shape enables us to design a cover and a base with much less vibration and noise. In this paper, we measured the force of disk-spindle motor and predicted SPL from HDD by computational simulation. To get a SPL of HDD by computational simulation, modal analysis and forced vibration analysis were performed with ANSYS, and sound radiation was computed using SYSNOISE. The calculated results were compared with experimental results and a good agreement was obtained. With this computer simulation procedure and design of experiment(DOE), optimal thickness of noise barrier and damper was calculated.

  • PDF

납-고무베어링을 적용한 제어장비의 동적 특성평가 (Dynamic Property Evaluation of Control Equipment using Lead Rubber Bearing)

  • 이경진;김갑순;서용표
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.341-348
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using lead Lead Rubber Bearing. In this study, a base isolation test of seismic monitoring control cabinet with LRB(lead rubber bearing) was performed. The cabinet will be installed on access floor in MCR(main control room) of nuclear power plant. Details and dynamic characteristics of the access floor were considered in the construction of testing specimen. N-S component of El Centre earthquake was used as seismic input motion. Acceleration response spectrums in the top of cabinets showed that the first mode frequency of cabinet with LRB(lead rubber bearing) was shifted to 7.5 Hz in compared with 18Hz of cabinet without LRB and the maximum peak acceleration was reduced in a degree of22 percent from 2.35 g to 1.84 g

  • PDF

능동자기베어링계의 슬라이딩모드 제어 (Sliding Mode Control of an Active Magnetic Bearing System)

  • 강민식
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.439-448
    • /
    • 2004
  • Magnetic bearing is an attractive device in precision engineering field because of its non-contacting nature and controllability of its dynamic characteristics. This paper provides a method of designing a sliding mode control for an active magnetic hearing(AMB) system which is used to support the elevation axis of a target tracking sight instead of mechanical bearings to eliminate the effect of mechanical friction. In such system, the axis should be levitated and supported within a predetermined air gap while AMB is excited by base motion. Experimental results showed that the sliding mode control is effective in disturbance rejection than conventional PID-control without any additive measurements.

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상 (Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam)

  • 박철희;조종두;김명구
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD)

  • 한재혁;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF

A Study on Fuzzy Wavelet Basis Function for Image Interpolation

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.266-270
    • /
    • 2004
  • The image interpolation is one of an image preprocessing process to heighten a resolution. The conventional image interpolation used much to concept that it put in other pixel to select the nearest value in a pixel simply, and use much the temporal object interpolation techniques to do the image interpolation by detecting motion in a moving picture presently. In this paper, it is proposed the image interpolation techniques using the fuzzy wavelet base function. This is applied to embody a correct edge image and a natural image when expand part of the still image by applying the fuzzy wavelet base function coefficient to the conventional B-spline function. And the proposal algorithm in this paper is confirmed to improve about 1.2831 than the image applying the conventional B-spline function through the computer simulation.

Numerical and experimental studies of a building with roller seismic isolation bearings

  • Ortiz, Nelson A.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.475-489
    • /
    • 2015
  • This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. The results are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model. Finally, the performance of the constructed seismic protection system is assessed through a parametric study.