• Title/Summary/Keyword: bandwidth control

Search Result 1,338, Processing Time 0.025 seconds

LoRa LPWAN Sensor Network for Real-Time Monitoring and It's Control Method (실시간 모니터링을 위한 LoRa LPWAN 기반의 센서네트워크 시스템과 그 제어방법)

  • Kim, Jong-Hoon;Park, Won-Joo;Park, Jin-Oh;Park, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.359-366
    • /
    • 2018
  • Social infrastructure facilities that have been under construction since the country's high-growth period are undergoing rapid aging, and safety assessments of large structures such as bridge tunnels, which can be directly linked to large-scale casualties in the event of an accident, are necessary. Wireless smart sensor networks that improve SHM(Structural Health Monitoring) based on existing wire sensors are difficult to construct economical and efficient system due to short signal reach. The LPWAN, Low Power Wide Area Network, is becoming popular with the Internet of Things and it is possible to construct economical and efficient SHM by applying it to structural health monitoring. This study examines the applicability of LoRa LPWAN to structural health monitoring and proposes a channel usage pre-planning based LoRa network operation method that can efficiently utilize bandwidth while resolving conflicts between channels caused by using license - exempt communication band.

Cramér-Rao Lower Bound of Multipath Angle Estimation for Low-Flying Target of Dual-Frequency Airborne Radar (항공기 레이다에 있어 두 개의 주파수를 사용하였을 때 저고도 표적 다중경로 각도 추정의 CRLB)

  • Jung, Ji Hyun;Kim, Jinuk;Lee, Joohyun;Chun, Joohwan;Oh, Yougeun;Suh, Jinbae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.373-379
    • /
    • 2019
  • If two signals with the same single-tone frequency and differing phases impinge simultaneously on an antenna at slightly differing angles, then a large error in the angle estimation might occur if the phase difference is either $0^{\circ}$ or $180^{\circ}$. This phenomenon might arise with an airborne fire-control radar, which has a relatively small bandwidth, for a low-flying target over the sea or terrain surface. In this paper, we show that the $Cram{\acute{e}}r$-Rao lower bound for such a target can be significantly lowered with the use of two frequencies.

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

A CPW-fed Small Monopole Antenna for 5.1~5.8 GHz WLAN (5.1~5.8 GHz 무선랜용 CPW 급전 소형 모노폴 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1659-1665
    • /
    • 2019
  • In this paper, a novel design of a compact printed monopole antenna for wireless local area network (WLAN) applications is investigated. The radiator with a patch of different line width and step-shaped ground planes is used to reduce the antenna size. The size of the antenna is 16 × 17 × 1 ㎣ and is fabricated with a photolithography technique. The simulated and measured results agree well. The resonant frequency of the investigated antenna is about 5.2 GHz and can cover an impedance bandwidth of 1 GHz for the measurement result. In addition, we presented the measured radiation pattern, presented the gain and efficiency measured in the required WLAN 5 GHz frequency band (5.15-5.825 GHz), and confirmed that it can be used as a 5 GHz band WLAN antenna. The investigated antenna has a small size, light weight, low cost, omni-directional radiation pattern, high gain, and high efficiency.

A Routing Algorithm based on Deep Reinforcement Learning in SDN (SDN에서 심층강화학습 기반 라우팅 알고리즘)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1153-1160
    • /
    • 2021
  • This paper proposes a routing algorithm that determines the optimal path using deep reinforcement learning in software-defined networks. The deep reinforcement learning model for learning is based on DQN, the inputs are the current network state, source, and destination nodes, and the output returns a list of routes from source to destination. The routing task is defined as a discrete control problem, and the quality of service parameters for routing consider delay, bandwidth, and loss rate. The routing agent classifies the appropriate service class according to the user's quality of service profile, and converts the service class that can be provided for each link from the current network state collected from the SDN. Based on this converted information, it learns to select a route that satisfies the required service level from the source to the destination. The simulation results indicated that if the proposed algorithm proceeds with a certain episode, the correct path is selected and the learning is successfully performed.

Traffic-Oriented Stream Scheduling for 5G-based D2D Streaming Services

  • Lee, Chong-Deuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.95-103
    • /
    • 2022
  • As 5G mobile communication services gradually expand in P2P (peer-to-peer) or D2D (device-to-device) applications, traffic-oriented stream control such as YouTube streaming is emerging as an important technology. In D2D communication, the type of data stream most frequently transmitted by users is a video stream, which has the characteristics of a large-capacity transport stream. In a D2D communication environment, this type of stream not only provides a cause of traffic congestion, but also degrades the quality of service between D2D User Equipments (DUEs). In this paper, we propose a Traffic-Oriented Stream Scheduling (TOSS) scheme to minimize the interruption of dynamic media streams such as video streams and to optimize streaming service quality. The proposed scheme schedules the media stream by analyzing the characteristics of the media stream and the traffic type in the bandwidth of 3.5 GHz and 28 GHz under the 5G gNB environment. We examine the performance of the proposed scheme through simulation, and the simulation results show that the proposed scheme has better performance than other comparative methods.

Performance Evaluation of SDN Controllers: RYU and POX for WBAN-based Healthcare Applications

  • Lama Alfaify;Nujud Alnajem;Haya Alanzi;Rawan Almutiri;Areej Alotaibi;Nourah Alhazri;Awatif Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.219-230
    • /
    • 2023
  • Wireless Body Area Networks (WBANs) have made it easier for healthcare workers and patients to monitor patients' status continuously in real time. WBANs have complex and diverse network structures; thus, management and control can be challenging. Therefore, considering emerging Software-defined networks (SDN) with WBANs is a promising technology since SDN implements a new network management and design approach. The SDN concept is used in this study to create more adaptable and dynamic network architectures for WBANs. The study focuses on comparing the performance of two SDN controllers, POX and Ryu, using Mininet, an open-source simulation tool, to construct network topologies. The performance of the controllers is evaluated based on bandwidth, throughput, and round-trip time metrics for networks using an OpenFlow switch with sixteen nodes and a controller for each topology. The study finds that the choice of network controller can significantly impact network performance and suggests that monitoring network performance indicators is crucial for optimizing network performance. The project provides valuable insights into the performance of SDN-based WBANs using POX and Ryu controllers and highlights the importance of selecting the appropriate network controller for a given network architecture.

Analysis of Communication Performance Requirements for Initial-Phase UAM Services (UAM 초기 운영을 위한 통신 성능 요구도 도출)

  • Young-Ho Jung;HyangSig Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.109-115
    • /
    • 2024
  • The Concept of Operations (ConOps) document issued by the Korean Government (K-UAM ConOps) for urban air mobility (UAM) services takes into account not only aviation voice communication but also the use of 4G and 5G mobile communication to support the initial phase of UAM services. This paper studies a methodology to establish communication performance requirements for UAM traffic management and presents the analyzed results for communication performance requirements. To accomplish this, the operational scenarios of UAM developmental stages outlined in the K-UAM ConOps and FAA ConOps are scrutinized, and the diverse messages that must be communicated among various stakeholders for effective UAM operations are identified. A draft of communication performance requirements is also calculated by considering packet sizes, transmission frequencies, acceptable latencies, and availability. The outcomes of this study are expected to stand as a pioneering effort in defining communication requirements for UAM services, providing a crucial foundation for future initiatives such as the design of dedicated communication networks for UAM and the determination of required frequency bandwidth.

Optical Communication and Sensing Modules for Plastic Optical Fibers (고분자광섬유용 광통신 및 센서 모듈)

  • Park, Byung-Wook;Yoon, Do-Young;Kim, Dong-Shik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.558-564
    • /
    • 2009
  • POF(Polymer optical fiber) offers advantages of lighter, inexpensive, and easier to use over GOF(glass optical fiber). Its higher transmission loss and low bandwidth, however, make it suitable only for short distance networking such as LAN. The polymer materials and its synthesis technology of low transmission loss and the broader application for flexible POF are the two of many critical areas to be investigated more. In the current study, low-noise POF modules are developed and optimized with a low noise amplifier and low cost LED of 650 nm. In order to demonstrate the dynamic characteristics of the POF module for optical communication and sensing, we have built an image transfer module, optical transmission speed measurement module, optical transceiver for RS-232, and sound-transfer module, and the signal characteristics of them are evaluated. It is found that the module can be readily used for a quick and simple measurement of optical transfer speed. With help of analog amplifier, LED, and PD, sound and image transfers through a maximum 60 m optical waveguide have been confirmed. Real-time data transfer was also demonstrated in PID control, which is thought to be valuable to industrial plant design and control.