• Title/Summary/Keyword: bacterial isolation

Search Result 600, Processing Time 0.056 seconds

A Case of Pneumonia with Septic Shock Due to Nocardia farcinia in Liver Transplant Patient (간이식 환자에서 발생한 Nocardia farcinia 폐렴 및 패혈성 쇼크 1예)

  • Lee, Su-Hwan;Park, Byung-Hoon;Son, Ji-Young;Jung, Ji-Ye;Kim, Eun-Young;Lim, Ju-Eun;Lee, Ji-Hoon;Hyun, Shin-Young;Lee, Sang-Hoon;Lee, Sang-Kook;Kim, Song-Yee;Lee, Kyung-Jong;Kang, Young-Ae;Kim, Young-Sam;Kim, Se-Kyu;Chang, Joon;Seo, You-Kyung;Lee, Kyoung-Won;Park, Moo-Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.6
    • /
    • pp.469-473
    • /
    • 2010
  • Nocardia farcinia, an aerobic, gram-positive bacilli actinomycetes of the genus Nocardia, is an uncommon pathogen found in humans. The most common Nocardia infection sites are the lung, central nervous system, and skin. Even though hematogenous dissemination can occur, isolation of the organism from blood cultures is very rare. We report a case of Nocardia infection that was isolated on blood cultures. A 59-year-old male with a medical history that includes a liver transplantation 6-years prior due to hepatocellular carcinoma secondary to chronic hepatitis B, developed pneumonia and was transferred to Severance Hospital. At the time of admission, the patient's initial exam showed hypothermia, tachypnea, and hypotension. His chest radiograph showed severe pneumonia and a large abscess on left upper lobe. Under the presumptive diagnosis of bacterial pneumonia or other opportunistic infection, we started broad spectrum antibiotics. However, he developed Nocardia sepsis, rapidly deteriorated, and subsequently died.

Isolation of Mutant Strains from Keratinase Producing Bacillus subtilis SMMJ-2 and Comparision of Their Enzymatic Properties (Keratinase 생산균 Bacillus subtilis SMMJ-2의 변이주 분리와 효소학적 특성 비교)

  • Ko, Hee-Sun;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Keratinase is widely used in certain industrial applications. The present study sought to improve the culture conditions of Bacillus subtilis SMMJ-2 to facilitate mass production of keratinase. Strain SMMJ-2 was irradiated by ultraviolet light and the resulting isolates were tested for keratinase activity. Isolates displaying elevated keratinase activity were selected and used to determine the optimum temperature (24, 30, 37, 45, $55^{\circ}C$) for bacterial keratinase production during a 4 day incubation period. The highest enzyme activity (55 units/mL/min), from a Bacillus subtilis SMMJ-2 mutant (mutant No. 2) was demonstrated following incubation at $30^{\circ}C$. The effects of carbon and nitrogen sources on keratinase production were confirmed by measuring the enzyme activity from the culture broth of the mutant strain cultured in various media containing different carbon source and nitrogen sources during a 4 day period. The optimal medium composition for producing keratinase consisted of 1% glucose, 0.7% $K_2HPO_4$, 0.2% $K_2HPO_4$, and 1.2% soybean meal. Optimal initial pH and temperature for producing keratinase were 7.0 and $30^{\circ}C$, respectively. Keratinases produced by B. subtilis SMMJ-2 and the mutant No. 2 were purified from the culture broth which used soybean meal as a nitrogen source. Membrane ultrafiltration, DEAE-sephacel ion exchange and Sephadex G-100 gel chromatography were used to purify the enzymes. The purified keratinases from both B. subtilis SMMJ-2 and the mutant No. 2 showed single bands and their molecular weights were estimated as 28 kDa and 42 kDa, respectively on SDS-polyacrylamide gel electrophoresis.

Studies on Microbial Ecology of Actinomycetes in Tideland Soils. (서해 아암도 갯벌토양 미생물의 개체군 분석 및 RAPD 분석에 의한 방선균의 생태학적 연구)

  • 조영주;김정한;전은수;이상미;박동진;이재찬;이향범;김창진
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Ecological characteristics of microorganisms in tideland soils were studied by investigation of microbial diversity and population. Twenty soil samples were taken at surface, 10, 20 and 30 cm depth each. Bacteria, actinomycetes and fungi were isolated on each selective isolation medium containing different concentration of NaCl. Actinomycetes were the most isolated from soil samples taken at 10 cm depth and isolated by humic acid-vitamin (HV) medium without sea water or salt. Twenty nine strains of actinomycetes were isolated at surface soil and 74, 39, 37 strains were at 10, 20, and 30 cm depth, respectively. All these isolates were analysed and grouped by random amplified polymorphic DNA (RAPD)-PCR analysis. Many of the isolates were clustered into Microtetraspora and Pseudonocardia. Fungal isolates were highly distributed at the surface soil and isolated well on potato dextrose agar (PDA) medium with sea water. Bacterial isolates were higly distributed at surface soil and isolated well by nutrient medium without sea water or salt. Soil samples taken at 10 cm depth showed the highest microbial diversity and population.

Isolation of Egg-Contaminating Bacteria and Evaluation of Bacterial Radiation Sensitivity (계란 오염 세균의 분리 및 분리 균주의 감마선 감수성 평가)

  • Kim, Dong-Ho;Yun, Hye-Jeong;Song, Hyun-Pa;Lim, Byung-Lak;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.774-781
    • /
    • 2008
  • was performed and Staphylococcus sciuri, Bacillus cereus, Escherichia coli, Proteus mirabilis, and Enterococcus faecalis were identified. No Salmonella strain, a typical contaminant of eggs, was found. The radiation sensitivities of isolated bacteria and Salmonella typhimurium, in an inoculated model system, were expressed in $D_{10}$ values. The ranges of $D_{10}$ values shown by S. typhimurium, S. sciuri, B. cereus, E. coli, P. mirabilis, and E. faecalis were 0.365-0.399 kGy, 0.418-0.471 kGy, 1.075-1.119 kGy, 0.280-0.304 kGy, 1.132-1.330 kGy, and 0.993-1.290 kGy, respectively. The growth of all six test bacteria in eggs (inoculated at $10^6-10^7\;CFU/g$) during 3 days of post-irradiation storage at ambient conditions ($25^{\circ}C$) was recorded. S. typhimurium was eliminated by irradiation at 3 kGy, and E. coli and S. sciuri were eliminated by irradiation at 5 kGy. The viable cell counts of B. cereus, P. mirabilis, and E. faecalis in eggs showed 4-6 log reductions after irradiation with 5 kGy.

Prevention of vibriosis in sea bass, Dicentrarchus labrax using ginger nanoparticles and Saccharomyces cerevisiae

  • Korni, Fatma M.M.;Sleim, Al Shimaa A.;Abdellatief, Jehan I.;Abd-elaziz, Rehab A.
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.185-199
    • /
    • 2021
  • Vibriosis is an important septicemic bacterial disease that affects a variety of commercial fish species, including cultured Dicentrarchus labrax. Nanotechnology has become an important modern tool for fish diseases prevention. Furthermore, nanomaterials have the ability to prevent and treat fish diseases. The current study was aimed to identify the causative agent of massive mortality of D. labrax commercial farm in Alexandria, Egypt. Experimental infection and the median lethal dose (LD50) of pathogenic isolate were assessed. Also, the effect of ginger nanoparticles (GNPs) and Sacchromyces cerevisiae as feed additives for prevention of vibriosis in D. labrax was carried out. Similarly, the tissue immunstimulant genes, IL-1β and TLR2 were measured in the spleen of feeding groups. The clinical signs of naturally diseased D. labrax showed corneal opacity and paleness of gills with excessive mucous secretion. The post-mortem abnormalities were severe hemorrhage and adhesion of internal organs. After bacteriological isolation and identification, the causative agent of mortality in the current study was Vibrio alginolyticus. The LD50 of V. alginolyticus was 1.5×105.4 CFU/ml. The experimentally infected D. labrax showed ulceration, exophthalmia and skin hemorrhages. The post-mortem findings of the experimentally infected D. labrax revealed internal hemorrhage, spleen darkness and paleness of liver. There is no mortality and 100% RPS in groups fed GNPs then injected with V. alginolyticus, in those fed a combination of GNPs and S. cerevisiae and a group fed normal diet then injected with physiological saline (control negative), respectively. Contrarily, there was 10% mortality and 87.5 RPS in the group fed S. cerevisae then injected with V. alginolyticus. On the other hand, the control positive group showed 79% mortality. The spleen IL-1β and TLR2 immunostimulant genes were significantly increased in groups of fish fed GNNP, S. cerevisiae and a combination of GNPs and S. cerevisiae, respectively compared to control group. The highest stimulation of those immunostimulant genes was found in the group fed a combination of GNPs and S. cerevisiae, while fish fed S. cerevisiae had the lowest level. Dietary combination of GNPs and S. cerevisiae was shown to be efficient in preventing of vibriosis, with greatest stimulation of spleen IL-1β and TLR2 immunostimulant genes.

Isolation, identification, and probiotic characteristics of Bacillus strains affecting the biogenic amine content in fermented soybean paste (발효 된장의 바이오제닉 아민 함량에 영향을 미치는 바실러스균의 분리 동정 및 프로바이오틱 특성)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.131-142
    • /
    • 2019
  • The primary objective of this study was to determine the content of biogenic amines in Korean traditional fermented soybean pastes (doenjang) and to isolate potential probiotic Bacillus sp. with the ability to inhibit biogenic amines accumulation. There were significant differences in the bacterial cell counts, pH value, titratable acidity, salinity, and biogenic amine content between the samples. Among Bacillus strains isolated from doenjang, Bacillus (B.) licheniformis DB102, B. subtilis DB203, B. stearothermophilus DB206, Bacillus sp. DB209, Bacillus sp. DB310, B. coagulans DB311, B. cereus DB313, B. amyloliquefaciens DB714, Bacillus sp. DB917, B. cereus DB 915, B. subtilis DB1020, and Bacillus sp. DB1022 were found to be able to produce biogenic amines. On the other hand, biogenic amine-degrading strains were identified as Bacillus sp. DB403, Bacillus sp. DB407, B. subtilis DB517, B. licheniformis DB612, and B. subtilis DB821. In particular, Bacillus sp. DB407 and B. subtilis DB821 showed probiotic properties including tolerance to artificial digestive juices, adherence to intestinal epithelial cells, resistance to antibiotics, and antibacterial activity against biogenic amine-producing strains. In conclusion, the two probiotic Bacillus strains may be considered as the suitable starter for manufacture of fermented soybean foods with low biogenic amines content.

Isolation and Characterization of a Nitric Oxide-induced Gene in Sweetpotato (고구마에서 질소 유도성 유전자의 분리 및 특성분석)

  • Lee, Il Hwan;Shim, Donghwan;Lee, Kang Lok;Nam, Ki Jung;Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.631-636
    • /
    • 2019
  • A new nitric oxide-induced (NOI) gene was isolated by screening ESTs from a cDNA library of dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). The 720 bp cDNA fragment, IbNOI, was sequenced, from which a 77 amino acid residue protein was deduced. A search of the protein BLAST database identified significant similarity to other plant NOI protein sequences. Quantitative RT-PCR analysis revealed diverse expression patterns of IbNOI in various tissues of the intact sweetpotato plant, and in leaves exposed to different stresses. The IbNOI gene was highly expressed in storage roots and suspension-cultured cells. In leaf tissues, IbNOI showed strong expression during sodium nitroprusside (SNP)-induced NO accumulation and chemical stress treatments. Expression of IbNOI was also induced under various abiotic stress conditions, such as dehydration, salt, and bacterial pathogen infection. These results suggest that IbNOI is involved in plant responses to diverse abiotic stresses and pathogen infection through a NO-related pathway.

Characterization of Miniimonas sp. S16 isolated from activated sludge (활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성)

  • Koh, Hyeon-Woo;Kim, Hongik;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.242-247
    • /
    • 2019
  • Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

Isolation of an Acetic Acid Bacterium Acetobacter pasteurianus CK-1 and Its Fermentation Characteristics (초산균 Acetobacter pasteurianus CK-1의 분리 및 발효 특성)

  • Bang, Kyu-Ho;Kim, Chae-Won;Kim, Chul-Ho
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • To effectively isolate acetic acid bacteria for producing makgeolli vinegar, various products were researched, and Acetobacter pasteurianus CK-1, a strain that is excellent in acetic acid production, was finally isolated. The optimal growth temperature of the isolated strain was confirmed to be 30℃, and it grew well in the pH range of 5.5~6.5, with optimal growth at pH 6. A. pasteurianus CK-1 had the most active proliferation when the initial ethanol concentration in the medium was 4%, and growth was possible even at an ethanol concentration of 7%. When inoculating the isolated strain into makgeolli to induce acetic acid fermentation, the pH at the beginning of fermentation was 3.54, which was gradually lowered to 2.77 after 18 days of fermentation. The acidity was 0.75% at the beginning of fermentation and gradually started to increase from the 4th day of fermentation. The final acidity at the end of fermentation was 5.54%. In the vinegar fermented by inoculating A. pasteurianus CK-1, acetic acid content was detected to be as high as 3,575.7±48.6 mg%, and the malic acid and citric acid contents were 2,150.8±27.6 and 55.8±3.7 mg%, respectively. Further, it was confirmed that the content and ratio of the organic acids produced significantly differed depending on the type of inoculated bacterial strain. During acetic acid fermentation, the populations of yeast and A. pasteurianus CK-1 were inversely changed. In the initial stage of fermentation, yeast dominated, and after 10 days of fermentation, A. pasteurianus CK-1 slowly proliferated and reached stationary phase.

Transcriptome Analysis of Streptococcus mutans and Separation of Active Ingredients from the Extract of Aralia continentalis (Streptococcus mutans의 전사체 분석과 독활 추출물로부터 활성 성분 분리)

  • Hyeon-Jeong Lee;Da-Young Kang;Yun-Chae Lee;Jeong Nam Kim
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.538-548
    • /
    • 2023
  • The research has been conducted on the isolation of antimicrobial compounds from plant natural extracts and their potential application in oral health care products. This study aimed to investigate the antimicrobial mechanism by analyzing the changes in gene expression of Streptococcus mutans, a major oral pathogen, in response to complex compounds extracted from Aralia continentalis and Arctii Semen using organic solvents. Transcriptome analysis (RNA-seq) revealed that both natural extracts commonly upregulated or downregulated the expression of various genes associated with different metabolic and physiological activities. Three genes (SMU_1584c, SMU_2133c, SMU_921), particularly SMU_921 (rcrR), known as a transcription activator of two sugar phosphotransferase systems (PTS) involved in sugar transport and biofilm formation, exhibited consistent high expression levels. Additionally, component analysis of the A. continentalis extract was performed to compare its effects on gene expression changes with the A. Semen extract, and two active compounds were identified through gas chromatography-mass spectrometry (GC-MS) analysis of the active fraction. The n-hexane fraction (ACEH) from the A. continentalis extract exhibited antibacterial specificity against S. mutans, leading to a significant reduction in the viable cell counts of Streptococcus sanguinis and Streptococcus gordonii among the tested multi-species bacterial communities. These findings suggest the broad-spectrum antibacterial activity of the A. continentalis extract and provide essential foundational data for the development of customized antimicrobial materials by elucidating the antibacterial mechanism of the identified active compounds.