DOI QR코드

DOI QR Code

Prevention of vibriosis in sea bass, Dicentrarchus labrax using ginger nanoparticles and Saccharomyces cerevisiae

  • Korni, Fatma M.M. (Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University) ;
  • Sleim, Al Shimaa A. (Unit of Bacteriology, Alexandria Provincial Lab, Animal Health Research Institute, ARC.) ;
  • Abdellatief, Jehan I. (Department of Fish diseases, Animal Health Research Institute, ARC.) ;
  • Abd-elaziz, Rehab A. (Fish Diseases Dpet. Provincial Alexandria Lab, Animal Health Research Institute, ARC.)
  • Received : 2021.07.09
  • Accepted : 2021.09.06
  • Published : 2021.12.31

Abstract

Vibriosis is an important septicemic bacterial disease that affects a variety of commercial fish species, including cultured Dicentrarchus labrax. Nanotechnology has become an important modern tool for fish diseases prevention. Furthermore, nanomaterials have the ability to prevent and treat fish diseases. The current study was aimed to identify the causative agent of massive mortality of D. labrax commercial farm in Alexandria, Egypt. Experimental infection and the median lethal dose (LD50) of pathogenic isolate were assessed. Also, the effect of ginger nanoparticles (GNPs) and Sacchromyces cerevisiae as feed additives for prevention of vibriosis in D. labrax was carried out. Similarly, the tissue immunstimulant genes, IL-1β and TLR2 were measured in the spleen of feeding groups. The clinical signs of naturally diseased D. labrax showed corneal opacity and paleness of gills with excessive mucous secretion. The post-mortem abnormalities were severe hemorrhage and adhesion of internal organs. After bacteriological isolation and identification, the causative agent of mortality in the current study was Vibrio alginolyticus. The LD50 of V. alginolyticus was 1.5×105.4 CFU/ml. The experimentally infected D. labrax showed ulceration, exophthalmia and skin hemorrhages. The post-mortem findings of the experimentally infected D. labrax revealed internal hemorrhage, spleen darkness and paleness of liver. There is no mortality and 100% RPS in groups fed GNPs then injected with V. alginolyticus, in those fed a combination of GNPs and S. cerevisiae and a group fed normal diet then injected with physiological saline (control negative), respectively. Contrarily, there was 10% mortality and 87.5 RPS in the group fed S. cerevisae then injected with V. alginolyticus. On the other hand, the control positive group showed 79% mortality. The spleen IL-1β and TLR2 immunostimulant genes were significantly increased in groups of fish fed GNNP, S. cerevisiae and a combination of GNPs and S. cerevisiae, respectively compared to control group. The highest stimulation of those immunostimulant genes was found in the group fed a combination of GNPs and S. cerevisiae, while fish fed S. cerevisiae had the lowest level. Dietary combination of GNPs and S. cerevisiae was shown to be efficient in preventing of vibriosis, with greatest stimulation of spleen IL-1β and TLR2 immunostimulant genes.

Keywords

Acknowledgement

We would like to thank Biotechnology unit Reference lab of veterinary quality control on poultry production Animal health research institute, Dokki Giza Egypt. Agricultural Research Centre for determination of virulence genes and transcription levels of the immune-related genes.

References

  1. Abass, DA., Obirikorang, KA., Campion, BB. et al.: Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus). Aquacult Int 26: 843-855, 2018. https://doi.org/10.1007/s10499-018-0255-1
  2. Abdelaziz M., Mai D. IbrahemMarwa A. IbrahimNermeen M. Abu-ElalaDalia A.and Abdel-moneam: Monitoring of different vibrio species affecting marine fishes in Lake Qarun and Gulf of Suez: Phenotypic and molecular characterization. Egyptian Journal of Aquatic Research 43: 141-146, 2017. http://dx.doi.org/10.1016%2Fj.ejar.2017.06.002 https://doi.org/10.1016%2Fj.ejar.2017.06.002
  3. Abdel-Aziz, M.; Eissa,A.; Hanna,M. and Abou Okada, M.: Identifying some pathogenic Vibrio /Photobacterium species during mass mortality of cultured Gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax) from some Egyptian coastal provinces. Int. J. Vet. Sci. Med., 1, 87-95, 2013. https://doi.org/10.1016/j.ijvsm.2013.10.004
  4. Abdel-Tawwab, M.; Abdel-Rahman, A. and Ismael, N. E.: Evaluation of commercial live bakers' yeast, Saccharomyces cerevisiae, as a growth and immunity promoter for fry of Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280: 185-189, 2008. https://doi.org/10.1016/j.aquaculture.2008.03.055
  5. Amend, D. F.: Potency testing of fish vaccines. International symposium on fish Biologics: Serodiagnostics and Vaccines. Developmental biology. 49: 447-454, 1981.
  6. Arancibia, S. A.; Caroll jbeltran; Isabel M Aguirre; Paulinasilva; Alexis L Peralta; Frano Malinarich and Marcela A H.: Toll-like Receptors are Key Participants in Innate-Immune Responses. Biol Res 40: 97-112, 2007. http// doi: 10.4067/s0716-97602007000200001.
  7. Austin, B. and Austin, A. D.: Bacterial fish pathogens: diseases of farmed and wild fish (5thed.), Springer/Prazis Publishing, Chichester, UK, 2012. https://www.springer.com/gp/book/9781402060687
  8. Basniwal, R. K., Buttar, H. S., Jain, V. K. and Jain, N.: Curcumin nanoparticles: preparation, characterization and antimicrobial studies. Journal of Agricultural Food Chemistry. 59: 2056-2061, 2011. https://doi.org/10.1021/jf104402t
  9. Bird, S.; Zou, J., Kono, T., Sakai, M., Dijkstra, J. M., Secombes, C.: Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. - Immunogenetics 56 (12): 909-923, 2005. https://doi.org/10.1007/s00251-004-0741-7
  10. Castro, R.; Zou, J.; Secombes, C.J. and Martin, S.A.M.: Cortisol modulates the induction of inflammatory gene expression in a rainbow trout macrophage cell line. Fish & Shellfish Immunology 30: 215-223, 2011. http//DOI: 10.1007/s00251-004-0741-7
  11. Cebeci , A.; Saltan, A. N. and Sahayaraju K.: Prediction of Toll-Like Receptor Gene Family in Asian Sea Bass. Genetics of Aquatic Organisms 3(2): 79-91, 2019. http// doi: 10.1016/j.fsi.2019.07.010. Epub 2019 Jul 6
  12. Chiu C-H, Cheng C-H, Gua W-R, Guu Y-K, Cheng W.: Dietary administration of the probiotic, Saccharomyces cerevisiae P13, enhanced the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 29: 1053-1059, 2010. http// doi: 10.1016/j.fsi.2009.02.018
  13. Chistiakov,D. A; Kabanov,F. V.; Troepolskaya O. D. and Tischenko, M. M. A.: A variant of the interleukin-1beta gene in European sea bass, Dicentrarchus labrax L., is associated with increased resistance against Vibrio anguillarum. Journal of Fish Diseases. 33(9): 759-767, 2010. https://doi.org/10.1111/j.1365-2761.2010.01182.x
  14. Cuesta A., Meseguer J., Esteban M. A.: Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.) Vet Immunol Immunopathol 101: 203-210, 2004. https://doi.org/10.1016/j.vetimm.2004.04.021
  15. Defoirdt, T.; Boon, N.; Sorgeloos, Verstraete,W. and Bossier, P.: Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends in Biotechnology. 25 (10): 472-479, 2007. https://doi.org/10.1016/j.tibtech.2007.08.001
  16. Esteban MA, Rodriguez A, Meseguer J.: Glucan receptor but not mannose receptor is involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) blood leucocytes. Fish Shellfish Immunol 16: 447-451, 2004.http//doi:10.1016/j.fsi.2003.07.004
  17. Gargouti A.S., Ab-Rashid M.N.K., Ghazali MF, Mitsuaki N., Haresh K. K., et al.: Detection of tdh and trh Toxic Genes in Vibrio Alginolyticus Strain from Mantis Shrimp (Oratosquilla Oratoria). J Nutr Food Sci 5: 405, 2015. http//doi:10.4172/2155-9600.1000405
  18. General Authority for Fish Resources Development (GAFRD), Statistics of fish production Govindaraju, K., Dilip Itroutwar, P., Veeramani, V. et al.: Application of Nanotechnology in Diagnosis and Disease Management of White Spot Syndrome Virus (WSSV) in Aquaculture. J. Clust. Sci. 31: 1163-1171, 2020. https://doi.org/10.1007/s10876-019-01724-3
  19. Grisez, L. and Ollevieribrio, F.: (Listonella) anguillarum infections in marine fish larviculture P. Lavens, E. Jaspers, I. Roelands (Eds.), Fish and crustacean larviculture symposium, European Aquaculture Society, Gent (1995).
  20. Groner, F.; Zikova, A. and Kloas, W.: Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and estrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology, Part C 167 51-57, 2015. http// doi: 10.1016/j.cbpc.2014.09.003
  21. Harikrishnan R, Kim M. C., Kim J. S., Balasundaram C., Heo M. S.: Immunomodulatory effect of probiotics enriched diets on Uronema marinum infected olive flounder. Fish Shellfish Immunol 30: 964-971, 2011. https://doi.org/10.1016/j.fsi.2011.01.030
  22. Hayatgheib, N., Moreau, E., Calvez, S. et al.: A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquacult Int 28: 1083-1123, 2020. https://doi.org/10.1007/s10499-020-00514-3
  23. Heng, J.; Su, J.; Huang, T. and Chen, L.: The polymorphism and haplotype of TLR3 gene in grass carp (Ctenopharyngodon idella) and their associations with susceptibility/resistance to grass carp reovirus. Fish & Shellfish Immunology, 30(1): 45-50, 2011. https://doi.org/10.1016/j.fsi.2010.09.004
  24. Holt, J. G.; Krieg, N. R.; Sneath, P.H.A.; Staley, J. T. and Williams, S.T.: Bergey's Manual of Determinative Bacteriology, 9 th ed. Baltimore: Williams & Wilkins, 1994.
  25. Hoseinifar, S. H.; Ringo, E.; Shenavar Masouleh, A. and Esteban, M. A.: Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev. Aquacult. 8: 89-102, 2016. https://doi.org/10.1111/raq.12082
  26. Irianto, A., and Austin, B.: Probiotics in aquaculture. Fish Shellfish Immun. 25: 633-642, 2002. https://doi.org/10.1046/j.1365-2761.2002.00422.x
  27. Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G. and Libralato, G.: Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res. 24: 17326-17346, 2017. https://doi.org/10.1007/s11356-017-9360-3
  28. Kim D. H., Austin B.: Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21: 513-524, 2006. http// doi: 10.1016/j.fsi.2006.02.007
  29. Korni, F. and Khalil, F.: Effect of ginger and its nano-particles on growth performance, cognition capability, immunity and prevention of motile Aeromonas septicaemia in Cyprinus carpio fingerlings. Aquaculture Nutrition. 23. 10.1111/anu.12526, 2017. https://doi.org/10.1111/anu.12526
  30. Fatma M.M. Korni, Fatma I. Abo El-Ela, Usama K. Moawad, Rehab K. Mahmoud, Yasser M. G.: Prevention of Edwardsiellosis in Clarias gariepinus using ginger and its nanoparticles with a reference to histopathological alterations, Aquaculture, Volume 539, 2021,736603,ISSN 0044-8486, https://doi.org/10.1016/j.aquaculture.2021.736603
  31. Korun J. and Timur G.: Marine Vibrios associated with diseased Sea bass (Dicentrarchus labrax) in Turkey. Journal of Fisheries and Science. 2(1): 66-76, 2008. http//DOI: 10.3153/jfscom.2008007
  32. Li P, Gatlin, D.: Nucleotide nutrition in fish: current knowledge and future applications. Aquacult 251: 141-152, 2006. https://doi.org/10.1016/j.aquaculture.2005.01.009
  33. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez P.J.J.: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42: 4591-4602, 2008. https://doi.org/10.1016/j.watres.2008.08.015
  34. Liu P.C.; Lin,J.Y.; Hsiao, P.T. and Lee, K.K.: Isolation and characterization of pathogenic Vibrio alginolyticus from diseased cobia Rachycentron canadum. Journal of Basic Microbiology. 44: 23-28, 2004. https://doi.org/10.1002/jobm.200310316
  35. Lokesh J, Fernandes JMO, Korsnes K, Bergh O, Brinchmann MF, Kiron V.: ranscriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. Fish Shellfish Immunol 33:626-631, 2012. http// doi: 10.1016/j.fsi.2012.06.017. Epub 2012 Jul 5
  36. Lopez-Castejon G., Sepulcre M. P., Roca F. J., Castellana B., Planas J. V., Meseguer J. and Mulero V.: The type II interleukin-1 receptor (IL-1RII) of the bony fish gilthead seabream Sparus aurata is strongly induced after infection and tightly regulated at transcriptional and post-transcriptional levels. Mol Immunol 44, 2772-2780, 2007. http//doi: 10.1016/j.molimm.2006.10.027
  37. Mustapha, S.; Mustapha, E.M.; Nozha, C.: Vibrio Alginolyticus: An Emerging Pathogen of Foodborne Diseases. International Journal of Science and Technology Volume 2 No. 4, 2013. http// Maejo International Journal of Science and Technology
  38. Norhidayah, A., Noriham, A, and; Rusop, M. D.: Assessment of antimicrobial activity of nanoparticle ginger rhizome water extract. International Journal of Scientific and Research Publications, (5),11, 656-669, 2015. http://ijsrp.org/
  39. Ortuno J, Cuesta A, Rodriguez A, Esteban MA, Meseguer J.: Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata). Vet Immunol Immunopathol 85: 41-50, 2002. http// doi:10.1016/s0165-2427(01)00406-8
  40. Pinoargote, G. and Ravishankar, S.: Evaluation of the Efficacy of Probiotics in vitro Against Vibrio parahaemolyticus, Causative Agent of Acute Hepatopancreatic Necrosis Disease in Shrimp. J Prob Health 6: 193, 49-89, 2018. http//doi:10.4172/2329-8901.1000193
  41. Pridgeon, J. W. and Klesius, P. H.: Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews 7, 1 -16, 2012. http// doi:10.1079/PAVSNNR20127048.
  42. Rattanachaikunsopon, P. and Phumkhachorn, P.: Assessment of synergistic efficacy of carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia (Oreochromis niloticus). African Journal of Microbiology Research. 4: 420-425, 2010. http://www.academicjournals.org/ajmr
  43. Sajeevan T.P., Philip R., Singh I.S.B.: Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquaculture, 287: 248-252, 2009. https://doi.org/10.1016/j.aquaculture.2008.10.045
  44. Rodriguez A., Cuesta A., Ortuno J, Esteban M. A., Meseguer J.: Immunostimulant properties of a cell wallmodified whole Saccharomyces cerevisiae strain administered by diet to seabream (Sparus aurata L.) Vet Immunol Immunopathol 96: 183-192, 2003. http//doi: 10.1016/j.vetimm.2003.07.001.
  45. Saifuddin, N., C. W. W. and YASUMIRA, A.A.N.: Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E-Journal of Chemistry, 2009, 6(1): 61-70, 2009. http// DOI: 10.1155/2009/734264
  46. Sayes, C.; Leyton, Y. and Riquelme, C.: Probiotic bacteria as a healthy alternative for fish aquaculture, in Antibiotic Use in Animals, ed S. Savic (London: Intech Open) 115-132, 2018. http/ DOI:10.5772/intechopen.71206
  47. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M.: Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine: NBM 12: 701-710, 2015. http/ doi: 10.1016/j.nano.2015.11.005
  48. Sharma S. R. K., Gaurav, R. , Dev K. V., Narasimhulu S. and Kuttickal K. P.: Vibrio alginolyticus infection in Asian seabass (Lates calcarifer, Bloch) reared in open sea floating cages in India. Aquaculture Research, 44: 86-92, 2013. https://doi.org/10.1111/j.1365-2109.2011.03013.x
  49. Sims, J. E. and Smith D. E.: The IL-1 family: regulators of immunity. Nat Rev Immunol 10: 89-102, 2010. http/ DOI: 10.1038/nri2691
  50. Sugita H, Miyajima C, Deguchi Y.: The vitamin B12-producing ability of intestinal bacteria isolated from tilapia and channel catfish. Nippon Suisan Gakkaishi 56, 701, 1990. https://doi.org/10.2331/suisan.56.701
  51. Takacs, L.: Self-sustaining reactions induced by ball milling. Progress in Materials Science. 47(4): 355-414, 2002. http/doi:10.1016/S0079-6425(01)00002-0
  52. Thune R.L., Stanely L.A. and Cooper R. K.: Pathogenesis of gram-negative bacterial infections in warm water fish. Annual Review of Fish Diseases 3: 37-68, 1993. http/DOI; 10.1016/0959-8030(93)90028-A
  53. Toranzo, A.E .: Report about fish bacterial diseases P. Alvarez-ellitero, J.L. Barja, B. Basurco, F. Berthe, A.E. Toranzo (Eds.) (2004). Mediterranean Aquaculture Diagnostic Laboratories, CIHEAM, Zaragoza. http://www.ciheam.org/
  54. Toranzo, A. E., Magarinos, B. and Romalde, J. L.: A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246: 37-61, 2005. http/doi.org/10.1016/j.aquaculture.2005.01.002
  55. Tukmechi A., Bandboni M.: Effects of Saccharomyces cerevisiae supplementation on immune response, hematological parameters, body composition and disease resistance in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). Journal of Applied Ichthyology 30: 55-61, 2014. https://doi.org/10.1111/jai.12314
  56. Varsamos, S., Flik, G., Pepin, J. F., Wendelaar B., S. E. and Brevil, G.: Husbandry stress during early life stages affects the stres response and health status of juvenile sea bass, Dicentrarchus labrax. Fish & Shellfish Immunology, 20: 82-96, 2006. http://doi.org/10.1016/j.fsi.2005.04.005
  57. Yuan, J.S.; Reed, A.; Chen, F. and Stewart, C.N.: Statistical analysis of real-time PCR data. BMC Bioinformatics, 7:85, 2006. https://doi.org/10.1186/1471- 2105-7-85
  58. Zorrilla,I.; Arijo,S.; Chabrillon,M.; Diaz,P.; Martinez-Manzanares,E.; Balebona, M.C.and and Morinigo, M.A.: Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup) and evaluation of the potential virulence role of their extracellular products. Journal of Fish Diseases, 26, pp. 103-108, 2003. https://doi.org/10.1046/j.1365-2761.2003.00437.x