• Title/Summary/Keyword: bacterial community structure

Search Result 200, Processing Time 0.027 seconds

Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

  • Lim, SooYeon;Seo, Jaehyun;Choi, Hyunbong;Yoon, Duhak;Nam, Jungrye;Kim, Heebal;Cho, Seoae;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1144-1151
    • /
    • 2013
  • In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below $E^{-10}$ using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4) were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below $10^{-5}$. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence (16S rDNA염기서열에 의한 불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균 군집의 다양성)

  • Choi, Gang-Guk;Lee, Oh-Hyung;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.307-312
    • /
    • 2003
  • To study the diversity of heterotrophic bacteria isolated from intestine of starfish, Asterias amurensis, we collected starfishes from the coastal area near Jangheung-Gun, Jeollanam-Do, Korea during July, 2000. Population density and bacterial diversity in the intestine of starfish were measured. The results were as follows; The population densities of heterotrophic bacteria in the intestine of starfish were 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$. Gram positive bacteria occupied 59% among 29 isolates. The community structure of dominant heterotrophic bacteria in the intestine of starfish consisted of Bacillaceae in the low G+C gram positive bacteria subphylum, Microbacteriaceae in the high G+C gram positive bacteria subphylum, and Alteromonadaceae in ${\gamma}$-Proteobacteria subphylum. Among eight strains of Bacillus spp., three strains showed more than 97% identity, but five strains showed about 90% identity with type strain on the basis of partial 16S rDNA sequence.

Characterization of Water Quality and Microbial Communities in Rivers in Changwon city (창원시 하천의 수질 및 미생물상 분석)

  • Kim Sun-A;Kim Chung-Hye;Lim Byung-Ran;Cho Kwang-Hyun;Park Hee-Chang;Joo Woo Hong
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.148-155
    • /
    • 2006
  • The diversity of bacterial populations in rivers flowing through Changwon City, was investigated using quinone profiling. The physicochemical properties such as temperature, pH, dissolved oxygen(DO), dissolved organic carbon (DOC) and biochemical oxygen demand (BOD) were also measured in this study. Ubiquinone (UQ)-8, UQ-9 and UQ-10 were observed in all samples for the sites investigated. UQ-8 was the -predominant quinone species in rivers except for Namch'on downstream, T'owolch'on, and Kaumchongch'on in autumn, while UQ-8 was also found as major quinones in the sample except for Hanamch'on, T'owolch'on, Kaumchongch'on, and Namsanch'on in winter. A higher concentration of DOC in rivers yield high concentration of plastoquinone (PQ-9) in autumn and those of total quinones in winter, respectively. Correlation analysis also indicate that BOD is considered to be a major factor controlling the concentration of PQ in rivers.

Changes in gut microbiota with mushroom consumption (버섯 섭취와 장내 미생물 균총의 변화)

  • Kim, Eui-Jin;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2021
  • Mushroom consumption causes changes in the immune system and gut microbiota via the actions of mushroom probiotic components. β-Glucan structure-related substances suppress secretion of inflammatory mediators, and induce macrophage activation, enhancing immunity and immune function. Substances other than directly useful components can be metabolized into short-chain fatty acids by gut microbiota. These short-chain fatty acids can then induce immunity, alleviating various diseases. Substances used to stimulate growth of health-promoting gut bacteria, thereby changing the gut microbiota community are defined to be probiotics. Probiotic altered intestinal microflora can prevent various types of bacterial infection from external sources, and can help to maintain immune system balance, thus preventing diseases. Research into beneficial components of Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes, Auricularia auricula-judae, and Agaricus bisporus, which are frequently consumed in Korea, changes in microbiota, changes in short-chain fatty acids, and correlations between consumption and health contribute to our understanding of the effects of dietary mushrooms on disease prevention and mitigation.

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Characteristics of Heterotrophic Bacterial Population in the Artificial Lake Geumgang Near Estuary Barrage (금강 하구둑 인근에서 미생물군집의 특성)

  • Bae, Myoung-Sook;Park, Suhk-Hwan;Choi, Gang-Guk;Lee, Keun-Kwang;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2005
  • The monthly variations of physico-chemical and microbiological water quality were investigate in the artificial Lake Geumgang near estuary barrage. Sixty heterotrophic bacteria were isolated and identified by amplification and sequencing of 16S rDNA. Water temperature, pH, and inorganic nutrients($NH_4$-N, $NO_2$-N, $NO_3$-N, $PO_4$-P) were measured. Concentrations of DO, BOD, and inorganic nutrients were lower than in the middle-stream of Geum river The population densities of heterotrophic bacteria and total coliforms varied from $4.1{\pm}1.0\times10^2$ to $6.7{\pm}1.1{\times}10^3\;cfu\;ml^{-1}$, and 0 to $2.3{\pm}0.6{\times}10^2\;cfu\;ml^{-1}$, respectively. Among the measured numbers of physiological groups of bacteria, cellulolytic bacteria showed higher population densities than those of other physiological groups. Bacterial community structure was analysed based on 16S rDNA partial sequencing. Among 60 isolates, dominant genus was Pseudomones (20 strains).

Properties of a Hexane-Degrading Consortium (Hexane 분해 혼합균의 특성)

  • Lee Eun-Hee;Kim Jaisoo;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It was characterized the hexane biodegradation and mineralization using a hexane-degrading consortium, and analyzed its bacterial community structure by 16S rDNA PCR-DGGE (denaturing gradient gel electrophoresis). The specific growth rate (${\mu}_{max}$) of the hexane-degrading consortium was 0.2 $h^{-1}$ in mineral salt medium supplemented with hexane as a sole carbon source. The maximum degradation rate ($V_{max}$) and saturation constant ($K_{s}$) of hexane of the consortium are 460 ${\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ and 25.87 mM, respectively. In addition, this consortium could mineralize $49.1{\%}$ of $^{14}C$-hexane to $^{14}CO_2$, and $43.6{\%}$ of $^{14}C$-hexane) was used for the growth of biomass. The clones isolated from the DGGE bands were closely related to the bacteria which were capable of degrading pollutants such as oil, biphenyl, PCE, and waste gases. The hexane-degrading consortium obtained in this study can be applied for the biological treatment of hexane.

Analysis of Microbial Community During the Anaerobic Dechlorination of Tetrachloroethylene (PCE) in Stream of Gimpo and Inchon Areas (경기도 김포, 인천 서구지역 소하천의 PCE 탈염소화 군집의 선별 및 다양성 분석)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Cho, Dea-Hyun;Sung, Youl-Boong;Ahn, Chi-Yong;Oh, Hee-Mock;Koh, Sung-Cheol;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • In this study, anaerobic enrichment cultivation was performed with the sediments from the Gimpo and Inchon areas. Lactate as an electron donor and PCE as an electron acceptor was injected into the serum bottle with an anaerobic medium. After the incubation of 8 weeks, the reductive dechlorination of PCE was observed in 7 sites among 16 sites (43%). Three enrichment cultures showed completely dechlorination of PCE to ethene, while four enrichment culture showed transformation of PCE to cis-DCE. The bacterial community structure was analyzed by PCR-DGGE. Dechlorinating bacteria were detected by species-specific primers. The dominant species in seven anaerobic enrichments were found to belong to the genus of Dehalococcoides sp. and Geobacter sp., and Dehalobacter sp.