DOI QR코드

DOI QR Code

The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence

16S rDNA염기서열에 의한 불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균 군집의 다양성

  • 최강국 (충남대학교 자연과학대학 미생물학과) ;
  • 이오형 (목포대학교 자연과학대학 분자유적학) ;
  • 이건형 (군산대학교 자연과학대학 과학기술학부)
  • Published : 2003.12.01

Abstract

To study the diversity of heterotrophic bacteria isolated from intestine of starfish, Asterias amurensis, we collected starfishes from the coastal area near Jangheung-Gun, Jeollanam-Do, Korea during July, 2000. Population density and bacterial diversity in the intestine of starfish were measured. The results were as follows; The population densities of heterotrophic bacteria in the intestine of starfish were 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$. Gram positive bacteria occupied 59% among 29 isolates. The community structure of dominant heterotrophic bacteria in the intestine of starfish consisted of Bacillaceae in the low G+C gram positive bacteria subphylum, Microbacteriaceae in the high G+C gram positive bacteria subphylum, and Alteromonadaceae in ${\gamma}$-Proteobacteria subphylum. Among eight strains of Bacillus spp., three strains showed more than 97% identity, but five strains showed about 90% identity with type strain on the basis of partial 16S rDNA sequence.

본 연구는 2000년 7월에 전남 장흥군에서 채집한 불가사리의 장내에 존재하는 종속영양세균의 다양성에 대해서 알아보았다. 불가사리 장내에 존재하는 균체수를 측정하였으며, 순수 분리된 균주를 대상으로 16S rDNA 증폭기법을 이용하여 세균의 다양성을 조사하였다. 불가사리 장내에 분포하는 종속영양세균의 균체수는 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$이었다. 29 균주의 세균이 순수 분리되었으며, 그 중 그람양성 세균은 분리된 균주의 59% (17균주)를 차지하였다. 불가사리 장내에서 분리된 균주는 Bacillus속, Microbacterium 속, 그리고 Marinobacter 속 등이 우점이었으며, 이외에도 Staphylococcus 속, Psychrobacter 속, Paracoccus 속, Erythrobacter 속, Zoogloea 속, Kocuria 속과 Arthrobacter 속 등이 포함되었다. 분리된 균주 가운데 Bacillus 속에 속하는 8균주 중 3균주는 type strain과 97% 이상의 유사도를 보인 반면, 5 균주는 유사도가 90%로 비교적 낮은 유사도를 보여 현재까지 알려지지 않은 신종일 가능성이 높다고 하겠다.

Keywords

References

  1. Amann, R.I., W. Ludwig, K.H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 59: 143-69
  2. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  3. Austin, B., D. Bucke, S.W. Feist and M. M. Helm. 1987. Disease problems among cultured bivalve larvae. MAFF Fisheries publication
  4. Boyle, PJaRM. 1978. Absence of micro-organisms in crustacean digestive tracts. Science 20: 1157-1159
  5. Cottrell, M.T. and S.C. Cary. 1999. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deepsea hydrothermal vent polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol. 65: 1127-1132
  6. Eden, P.A., T.M Schmidt, R.P. Blakemore and N.R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA Int. J. Syst. Bacteriol. 41: 324-325
  7. Felsenstein, J. 1985. Confidence limits on phylogenis: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  8. Fuhrman, J.A. 2002. Community structure and function in prokaryotic marine plankton. Antonie Van Leeuwenhoek 81: 521-527 https://doi.org/10.1023/A:1020513506777
  9. Gerhardt, P.M., W.A. Wood and N.R Krieg. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
  10. Gillespie, N.C. and I.C. Macrae. 1975. The bacterial flora of some Queensland fish and its ability to cause spoilage. J. Appl. Bacteriol. 39: 91-100
  11. Glockner, F.O., B.M Fuchs and R Amann. 1999. Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726
  12. Holben, W.E., P. Williams, M. Saarinen, L.K. Sarkilahti and J.H. Apajalahti. 2002. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb. Ecol. 44: 175-185 https://doi.org/10.1007/s00248-002-1011-6
  13. Horsrly, R.W. 1973. The bacterial flora of the Atlantic salmon (Salm sala L.) in relation to its environment. J. Appl. Bacteriol. 49: 377-386
  14. Joung, P.-M., K-S. Shin, J.-s Lim, I.S. Lee and S.J. Park. 2001. Diversity of acid-tolerant epiphytic bacterial communities on plant leaves in the industrial area and the natural forest area based on 16S rDNA. Kor. J. Microbiol. 37: 265-272
  15. Lee, G.-H., G.G. Choi and C.B. Baek. 1996. Distribution of aerobic/anaerobic saprophytic bacteria in the sediments of the Yellow sea near Kunsan, Koea. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 227-232
  16. Litchfield, C.D. and P.M Gillevet. 2002. Microbial diversity and complexity in hypersaline environments: A preliminary assessment. J. Ind. Microbiol. Biotechnol. 28: 48-55
  17. Lovelace, T.E., H. Tubiash and R.R. Colwell. 1968. Quantitative and qualitative commensal bacterial flora of Crassostrea virginica in Chesapeake Bay. Proc. Nat. Shellfish Association 58: 82-87
  18. MacDonald, N.L., J.R. Stark and B. Austin. 1986. Bacterial microflorain the gastro-intestinal tract of Dover sole (Solea soleaL.), with emphasis on the possible role of bacteria in the nutrition of the host. FEMS Microbiol. Lett. 35: 107-111 https://doi.org/10.1111/j.1574-6968.1986.tb01508.x
  19. Maidak B.L., J.R. Cole, T.G. Lilbum, C.T. Parker, P.R. Saxman Jr., and J.M. Stredwick. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  20. O'Sullivan, L.A., A.J. Weightman and J.C. Fry. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl. Environ. Microbiol. 68: 201-210 https://doi.org/10.1128/AEM.68.1.201-210.2002
  21. Ringo, E., J.B. Lodemel, R. Myklebust, T. Kaino, T.M. Mayhew and R.E. Olsen. 2001a. Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpinus L.). An electron microscopical study. J. Appl. Microbiol. 90: 294-300
  22. Ringo, E., M.S. Wesmajervi, H.R. Bendiksen, A. Berg, R.E. Olsen, and T. Johnsen. 2001b. Identification and characterization of Camobacteria isolated from fish intestine. Syst. Appl. Microbiol. 24: 183-191 https://doi.org/10.1078/0723-2020-00020
  23. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406-425
  24. Sleeter, T.D., P.J. Boyle, A.M. Cundell and R. Mitchell. 1978. Relationship between marine micro-organisms and the woodboring isopod Limnoria tripunctata. Mar. Biol. 45: 329-336.
  25. Thompson, F.L., C.C. Thompson and J. Swings. 2003. Vibrio tasmaniensis sp. nov., isolated from Atlantic salmon (Salrno salar L.). Syst. Appl. Microbiol. 26: 65-69
  26. Unkles, S.E. 1977. Bacterial flora of the sea urchin Echinus esculentus. Appl. Environ. Microbiol. 34: 347-350
  27. Wagner, M., B. Assmus, A. Hartmann, P. Hutzler and R. Amann. 1994. In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J. Microsc. 176: 181-187
  28. Weiss, P., B. Schweitzer, R. Amann and M. Simon. 1996. Identification in situ and dynamics of bacteria on limnetic organic aggregates (lake snow). Appl. Environ. Microbiol. 62: 1998-2005