• Title/Summary/Keyword: backbone curve

Search Result 33, Processing Time 0.027 seconds

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

The Evaluation of Dynamic Group Pile Effect by the Analysis of Experimental p-y Curves (실험 p-y 곡선을 이용한 동적 군말뚝 효과 분석)

  • 김성렬;김성환;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.127-132
    • /
    • 2002
  • Shaking table tests are performed on model group piles to investigate the mechanics of dynamic pile-soil interaction, and to evaluate the dynamic group pile effect. Tests are executed on a single pile as well as group piles($3\times3$) by varying a pile spacing from 3D to 8D. A lumped mass is located on top of piles to simulate a superstructure. Dynamic p-y curves of the single pile and the group piles are obtained from the tests and compared with the backbone slopes of API cyclic p-y curves. From the comparisons, dynamic pile group effects are evaluated in terms of a pile spacing, a shaking frequency, and a shaking intensity.

Anionic Graft Copolymerization Using Copolymer of Acryloyllactam Type Monomer (Acryloyllactam형 단량체의 공중합 및 그 공중합체를 이용한 음이온 그라프트 중합)

  • Hee G. Woo;Sam K. Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.179-187
    • /
    • 1982
  • The copolymerization of N-acryloylpyrrolidone and acrylonitrile was performed in N,N'-dimethylformamide at 50$^{\circ}$C and monomer reactivity ratio was obtained by using IR working curve and Fineman and Ross equation. ($r_1$ = 0.43, $r_2$ = 1.56) It is found that resulting copolymer is good polymeric initiator for anionic graft copolymerization of 2-pyrrolidone. Graft copolymers with polybutylamide (nylon-4) grafts onto poly(NAP-Co-AN) backbone were synthesized and the various effects on the graft copolymerization of 2-pyrrolidone were examined. The rate constants ($K_p$) of graft anionic polymerization at 40 and 50$^{\circ}$C were 2.82${\times}$10 and 2.93${\times}$10(l/mole, min), respectively.

  • PDF

Efficient Simulation of Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams (효율적인 대각보강 콘크리트 연결보의 이력거동 예측)

  • Koh, Hyeyoung;Han, Sang Whan;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • Diagonally reinforced concrete coupling beams (DRCB) play an important role in coupled shear wall systems since these elements dissipate most of seismic input energy under earthquake loading. For reliable seismic performance evaluation using nonlinear response history analysis, it is important to use an accurate analytical model for DRCBs. In this study, the Pinching4 model is used as a base model to simulate the cyclic behavior of DRCBs. For simulating the cyclic behavior of DRCBs using the Pinching4 model, the analytical parameters for backbone curve, pinching and cyclic deterioration in strength and stiffness should be computed. To determine the proper values of the constituent analytical parameters efficiently and accurately, this study proposes the empirical equations for the analytical parameters using regression analyses. It is shown that the hysteretic behavior of coupling beams can be simulated efficiently and accurately using the proposed numerical model with the proposed empirical equations of model parameters.

Somatometric Characteristics of Elementary School Boys by Regional Differences (지역차에 따른 학령기 남아의 체형특성 비교)

  • Yeo, Hye-Rin
    • Fashion & Textile Research Journal
    • /
    • v.5 no.4
    • /
    • pp.379-388
    • /
    • 2003
  • The purpose of this study was to compare the somatometric characteristics obtained from the factor scores of both upper and lower body by regional differences. The sample group was drawn from boys at the ages 7 to 12 living in Pusan and Kyungsangnam-do. Data from each boy comprised 57 anthropometric measurements and 11 photographic measurements. The study reached following conclusions. 1. According to the result of factor analysis, five indicative factor's were obtained from the upper body measurements and four indicative factors were obtained from the lower body measurements. 2. According to the comparision of factor scores on measurements of the upper body between Pusan and Kyungsangnam-do, there were differences in all five factors. Boys in Pusan had higher stature, bigger frame, more protruded chest and shoulder blades, more sloping curve along with the backbone, more protruded belly, narrower and sloping shoulders than boys in Kyungsangnam-do. 4. According to the comparision of factor scores on measurements of the lower body between Pusan and Kyungsangnam-do, there were differences in factor 1 and factor 4. Boys in Pusan had bigger frame and flatter hip than boys in Kyungsangnam-do.

Coil-to-globule transition of thermo-responsive γ-substituted poly (ɛ-caprolactone) in water: A molecular dynamics simulation study

  • Koochaki, Amin;Moghbeli, Mohammad Reza;Nikkhah, Sousa Javan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1313-1319
    • /
    • 2018
  • The coil-to-globule behavior of poly{${\gamma}$-2-[2-(2methoxyethoxy)ethoxy]ethoxy-3-caprolactone} (PMEEECL) as a ${\gamma}$-substituted poly (${\varepsilon}$-caprolactone) was investigated via atomistic molecular dynamics (MD) simulation. For this purpose, radius of gyration, end-to-end distance and radial distribution function of the chain in the presence of water were calculated. Consequently, the lower critical solution temperature (LCST) of PMEEECL chain at which the coil-to-globule transition takes place, was determined in each calculated parameter curve. The simulation results indicated that the LCST of PMEEECL was occurred at close to 320 K, which is in a good agreement with previous experimental results. Additionally, the appearance of sudden change in both Flory-Huggins interaction parameter (${\chi}$) and interaction energy between the PMEEECL chain and water molecules at about 320 K confirmed the calculated LCST result. The radial distribution function (RDF) results showed that the affinity of the PMEEECL side chain to water molecules is lower than its backbone.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Electronic Properties and Conformation Analysis of π-Conjugated Distyryl Benzene Derivaties

  • Kim, Cheol-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.330-336
    • /
    • 2002
  • A quantum-chemical investigation on the conformations and electronic properties of bis[2-{2-methoxy-4,6-di(t-butyl)phenyl}ethenyl]benzenes (MBPBs) as building block for ${\pi}$-conjugate polymer are performed in order to display the effects of t-butyl and methoxy group substitution and of kink(ortho and meta) linkage. The conjugation length of the polymers can be controlled by substituents and kink linkages of backbone. Structures for the molecules, o-, m-, and p-MBPBs as well as unsubstituted o-, m-, and p-DSBs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF method with 3-21G(d) basis set. The potential energy curves with respect to the change of single torsion angle are obtained by using semiempirical methods and ab initio HF/3-21G(d) basis set. The curves are similar shape in the molecules with respect to the position of vinylene groups. It is shown that the conformations of the molecules are compromised between the steric repulsion interaction and the degree of the conjugation. Electronic properties of the molecules were obtained by applying the optimized structures and geometries to the ZINDO/S method. ZINDO/S analysis performed on the geometries obtained by AM1 method and HF/3-21G(d) level is reported. The absorption wavelength on the geometries obtained by AM1 method is much longer than that by HF/3-21G(d) level. The absorption wavelength of MBPBs are red shifted with comparison to that of corresponding DSBs in the same torsion angle because of electron donating substituents. The absorption wavelength of isomers with kink(orth and meta) linkage is shorter than that of para linkage.

Generalized Analysis of RC and PT Flat Plates Using Limit State Model (한계상태모델을 이용한 철근콘크리트와 포스트텐션 무량판의 통합해석)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.599-609
    • /
    • 2009
  • This paper discusses generalized modeling schemes for both reinforced concrete (RC) and post-tensioned (PT) flat plate buildings. In this modeling approach, nonlinear behavior due to slab flexure, moment and shear transfer at slab-column connections, and punching shear was included along with linear secant stiffness of each member or connection that accounts for concrete cracking. This generalized model was capable of simulating all different scenarios of slab-column connection failures such as brittle punching, flexure-shear interactive failure, and flexural failure followed by drift-induced punching. Furthermore, automatic detection of drift-induced punching shear and subsequent backbone curve modifications were realistically modelled by incorporating the limit state model, in which gravity shear versus drift capacity relations were adopted. The validation of the model was conducted using one-third scale two-story by two-bay RC and PT flat plate frames. The comparisons revealed that the model was robust and effective.