DOI QR코드

DOI QR Code

Electronic Properties and Conformation Analysis of π-Conjugated Distyryl Benzene Derivaties

  • Kim, Cheol-Ju (Department of Chemistry, Chonbuk National University)
  • Published : 2002.02.20

Abstract

A quantum-chemical investigation on the conformations and electronic properties of bis[2-{2-methoxy-4,6-di(t-butyl)phenyl}ethenyl]benzenes (MBPBs) as building block for ${\pi}$-conjugate polymer are performed in order to display the effects of t-butyl and methoxy group substitution and of kink(ortho and meta) linkage. The conjugation length of the polymers can be controlled by substituents and kink linkages of backbone. Structures for the molecules, o-, m-, and p-MBPBs as well as unsubstituted o-, m-, and p-DSBs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF method with 3-21G(d) basis set. The potential energy curves with respect to the change of single torsion angle are obtained by using semiempirical methods and ab initio HF/3-21G(d) basis set. The curves are similar shape in the molecules with respect to the position of vinylene groups. It is shown that the conformations of the molecules are compromised between the steric repulsion interaction and the degree of the conjugation. Electronic properties of the molecules were obtained by applying the optimized structures and geometries to the ZINDO/S method. ZINDO/S analysis performed on the geometries obtained by AM1 method and HF/3-21G(d) level is reported. The absorption wavelength on the geometries obtained by AM1 method is much longer than that by HF/3-21G(d) level. The absorption wavelength of MBPBs are red shifted with comparison to that of corresponding DSBs in the same torsion angle because of electron donating substituents. The absorption wavelength of isomers with kink(orth and meta) linkage is shorter than that of para linkage.

Keywords

References

  1. Bradley, D. D. D. Synth. Metals 1993, 54, 401 https://doi.org/10.1016/0379-6779(93)91086-H
  2. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402 https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  3. Song, S. Y.; Shim, H. K. Synth. Metals 2000, 111-112, 437. https://doi.org/10.1016/S0379-6779(99)00394-X
  4. Ahn, T.; Song, S.-Y.; Shim, H.-K. Macromolecules 2000, 33, 6764. https://doi.org/10.1021/ma000449c
  5. Ahn, T.; Jang, M. S.; Shim, H.-K.; Hwang, D.-H.; Zyung, T. 1999, 32, 3279. https://doi.org/10.1021/ma981864w
  6. Pang, Y.; Li, J.; Hu, B.; Karasz, F. E. Macromolecules 1998, 31, 6730. https://doi.org/10.1021/ma9807926
  7. Ryu, H. K.; Kim, W. Y.; Nahm, K. S.; Han, Y. B.; Lee, C.; Lee, Y. S. Bull. Korean Chem. Soc. 2001, in press.
  8. Meyers, F.; Heeger, A. J.; Bredas, J. L. J. Chem. Phys. 1992, 97, 2750. https://doi.org/10.1063/1.463065
  9. Stalmach, U.; Detert, H.; Meier, H.; Gebhardt, V.; Haarer, D.; Bacher, A.; Schmidt, H.-W. Optical Materials 1998, 9, 77. https://doi.org/10.1016/S0925-3467(97)00108-0
  10. Belletete, M.; Mazerolle, L.; Desrosiers, N.; Leclere, M.; Durocher, G. Macromolecules 1995, 28, 8587. https://doi.org/10.1021/ma00129a018
  11. Dicesare, N.; Belletete, M.; Leclere, M.; Durocher, G. J. Mol. Struct. (Theochem) 1999, 467, 259. https://doi.org/10.1016/S0166-1280(99)00002-0
  12. Dicesare, N.; Belletete, M.; Raymond, F.; Leclere, M.; Durocher, G. J. Phys. Chem. 1997, A101, 776.
  13. Dicesare, N.; Belletete, M.; Leclere, M.; Durocher, G. J. Phys. Chem. 1998, A102, 5142.
  14. Hong, S. Y. Bull. Korean Chem. Soc. 1999, 20, 42
  15. Hong, S. Y.; Marynick, D. S. Macromolecules 1992, 25, 3591 https://doi.org/10.1021/ma00039a045
  16. Peri, J. W.; Hwang, L.; Yu, W.; Heeger, A. J. Macromolecules 2000, 33, 2462 https://doi.org/10.1021/ma9914220
  17. Karpfen, A.; Choi, C. H.; Kertesz, M. J. Phys. Chem. A 1997, 101, 7426 https://doi.org/10.1021/jp971606l
  18. Miller, R. D.; Klaerner, G. Macromolecules 1998, 31, 2007. https://doi.org/10.1021/ma971073e
  19. SoKolik, I.; Yang, Z.; Karasar, F. E.; Morton, D. C. J. Appl. Phys. 1993, 74, 3584. https://doi.org/10.1063/1.354539
  20. Jacobs, S.; Eevers, W.; Verreyt, G.; Geise, H. J. Synthetic Metals 1993, 61, 189 https://doi.org/10.1016/0379-6779(93)91223-O
  21. Son, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Science 1995, 269, 375
  22. Frisch, M. J. et al. Gaussian 98; Gaussian, Inc.; Pittsburgh, Pennsylvania, 1998.
  23. Foresman, J. B.; Frisch, A. Geometry Optimization, in Exploring Chemistry with Electronic Structure Methods; Gaussian Inc.: 1996.
  24. Lhost, O.; Bredas, J. L. J. Chem. Phys. 1992, 96, 5279 https://doi.org/10.1063/1.462713
  25. Mao, G.; Fischer, J. E.; Karasz, F. E.; Winokur, M. J. J. Chem. Phys. 1993, 98, 712 https://doi.org/10.1063/1.464616
  26. Weast, R. E. Handbook of Chemistry and Physics, 70th Ed.; CRC Press Inc.: Bocaraton, Florida, U.S.A., 1990; p D-190
  27. Han, J. H.; Lee, Y. S.; Nahm, K. S.; Cho, E. H.; Ko, S. B.; Kim, C.-J.; Jeon, I. C.; Lee, W. H.; Suh, E. K.; Lee, Y. H. Bull. Korean Chem. Soc. 1999, 20, 1093
  28. Ni, J. P.; Ueda, Y.; Ichino, Y.; Yase, K.; Wang, D. K. Thin Solid Film 2000, 363, 86 https://doi.org/10.1016/S0040-6090(99)01005-6
  29. Yang, Z.; Sokolik, I.; Karasz, F. E. Macromolecules 1993, 26, 1188 https://doi.org/10.1021/ma00057a047

Cited by

  1. Electronic Properties and Conformation Analysis of Phytochromobilins, Chromophore in Phytochrome vol.29, pp.9, 2002, https://doi.org/10.5012/bkcs.2008.29.9.1678
  2. Synthesis, structural, theoretical studies and biological activities of 3-(arylamino)-2-phenyl-1H-inden-1-one derivative vol.1067, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2014.03.042