• 제목/요약/키워드: back-propagation

검색결과 1,469건 처리시간 0.044초

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF

Statistical Prediction of Wake Fields on Propeller Plane by Neural Network using Back-Propagation

  • Hwangbo, Seungmyun;Shin, Hyunjoon
    • Journal of Ship and Ocean Technology
    • /
    • 제4권3호
    • /
    • pp.1-12
    • /
    • 2000
  • A number of numerical methods like Computational Fluid Dynamics(CFD) have been developed to predict the flow fields of a vessel but the present study is developed to infer the wake fields on propeller plane by Statistical Fluid Dynamics(SFD) approach which is emerging as a new technique over a wide range of industrial fields nowadays. Neural network is well known as one prospective representative of the SFD tool and is widely applied even in the engineering fields. Further to its stable and effective system structure, generalization of input training patterns into different classification or categorization in training can offer more systematic treatments of input part and more reliable result. Because neural network has an ability to learn the knowledge through the external information, it is not necessary to use logical programming and it can flexibly handle the incomplete information which is not easy to make a definition clear. Three dimensional stern hull forms and nominal wake values from a model test are structured as processing elements of input and output layer respectively and a neural network is trained by the back-propagation method. The inferred results show similar figures to the experimental wake distribution.

  • PDF

신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어 (Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator)

  • 고종선;윤성구;이태호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권8호
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

혼합된 GA-BP 알고리즘을 이용한 얼굴 인식 연구 (A Study on Face Recognition using a Hybrid GA-BP Algorithm)

  • 전호상;남궁재찬
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.552-557
    • /
    • 2000
  • 본 논문에서는 신경망의 초기 파라미터(가중치, 바이어스) 값을 최적화 시키는 GA-BP(Genetic Algorithm-Backpropagation Network) 혼합 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안하였다. 입력 영상의 각 픽셀들을 신경망의 입력으로 사용하고 고정 소수점 실수값으로 이루어진 신경망의 초기 파리미터 값은 유전자 알고리즘의 개체로 사용하기 위해 비트 스트링으로 변환한다. 신경망의 오차가 최소가 되는 값을 적합도로 정의한 뒤 새롭게 정의된 적응적 재학습 연산자를 이용하여 이를 평가해 최적의 진환된 신경망을 구성한 뒤 얼굴을 인식하는 실험을 하였다. 실험 결과 학습 수렴 속도의 비교에서는 오류 역전과 알고리즘 단독으로 실행한 수렴 속도보다 제안된 알고리즘의 수렴 속도가 향상된 결과를 보였고 인식률에서 오류 역전과 알고리즘 단독으로 실행한 방법보다 2.9% 향상된 것으로 나타났다.

  • PDF

인공신경망기법에 상관계수를 고려한 서울 강우관측 지점 간의 강우보완 및 예측 (Rainfall Adjust and Forecasting in Seoul Using a Artificial Neural Network Technique Including a Correlation Coefficient)

  • 안정환;정희선;박인찬;조원철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.101-104
    • /
    • 2008
  • In this study, rainfall adjust and forecasting using artificial neural network(ANN) which includes a correlation coefficient is application in Seoul region. It analyzed one-hour rainfall data which has been reported in 25 region in seoul during from 2000 to 2006 at rainfall observatory by AWS. The ANN learning algorithm apply for input data that each region using cross-correlation will use the highest correlation coefficient region. In addition, rainfall adjust analyzed the minimum error based on correlation coefficient and determination coefficient related to the input region. ANN model used back-propagation algorithm for learning algorithm. In case of the back-propagation algorithm, many attempts and efforts are required to find the optimum neural network structure as applied model. This is calculated similar to the observed rainfall that the correlation coefficient was 0.98 in missing rainfall adjust at 10 region. As a result, ANN model has been for suitable for rainfall adjust. It is considered that the result will be more accurate when it includes climate data affecting rainfall.

  • PDF

FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현 (Implementation of back propagation algorithm for wearable devices using FPGA)

  • 최현식
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권2호
    • /
    • pp.7-16
    • /
    • 2019
  • 신경 회로망을 구현하기 위해 다양한 시도들이 이루어지고 있으며, 하드웨어적인 개선을 위해 전용 칩 개발이 이루어지고 있다. 이러한 신경 회로망을 웨어러블 디바이스에 적용하기 위해서는 소형화와 저전력 동작이 필수적이다. 이러한 관점에서 적합한 구현 방법은 FPGA (field programmable gate array)를 사용한 디지털 회로 설계이다. 이 시스템을 구현하기 위해서는 성능 향상을 위해 신경 회로망의 많은 부분을 차지하는 학습 알고리즘을 FPGA 내에 구현하여야 한다. 본 논문에서는 FPGA를 이용하여 다양한 학습 알고리즘 중 역전파 알고리즘을 구현하였으며, 구현 된 신경 회로망은 OR 게이트 연산을 통해 검증되었다. 또한 이러한 신경 회로망을 활용하여 다양한 사용자의 생체 신호 측정 결과를 분석할 수 있음을 확인하였다.

한글문서분류에 SVD를 이용한 BPNN 알고리즘 (BPNN Algorithm with SVD Technique for Korean Document categorization)

  • 리청화;변동률;박순철
    • 한국산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.49-57
    • /
    • 2010
  • 본 논문에서는 역전파 신경망 알고리즘(BPNN: Back Propagation Neural Network)과 Singular Value Decomposition(SVD)를 이용하는 한글 문서 분류 시스템을 제안한다. BPNN은 학습을 통하여 만들어진 네트워크를 이용하여 문서분류를 수행한다. 이 방법의 어려움은 분류기에 입력되는 특징 공간이 너무 크다는 것이다. SVD를 이용하면 고차원의 벡터를 저차원으로 줄일 수 있고, 또한 의미있는 벡터 공간을 만들어 단어 사이의 중요한 관계성을 구축할 수 있다. 본 논문에서 제안한 BPNN의 성능 평가를 위하여 한국일보-2000/한국일보-40075 문서범주화 실험문서집합의 데이터 셋을 이용하였다. 실험결과를 통하여 BPNN과 SVD를 사용한 시스템이 한글 문서 분류에 탁월한 성능을 가지는 것을 보여준다.

인공신경망을 이용한 PHC 매입말뚝의 지지력 평가 (Evaluation of Bearing Capacity on PHC Auger-Drilled Piles Using Artificial Neural Network)

  • 이송;장주원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권6호
    • /
    • pp.213-223
    • /
    • 2006
  • 본 연구에서는 화강풍화토 지반에 시공된 PHC 매입말뚝의 지지력의 평가를 위해 인공신경망을 적용하였다. 오류역전파 인공신경망의 적용성을 증명하기 위해 168개의 PHC 매입말뚝의 현장시험 데이터가 사용되었다. 연구결과 오류역전파 인공신경망의 말뚝지지력 평가가 동재하시험결과와 잘 일치함을 보여주었으며, 이러한 결과는 인공신경망을 이용한 PHC 매입말뚝의 지지력 평가가 신뢰성이 있음을 보여준다.

CT시험편의 Back Face Strain Compliance 평가 (Evaluation of a Back Face Strain Compliance of CT specimen)

  • 김원범
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.686-691
    • /
    • 2016
  • 용접강구조물에서는 용접비드와 같은 응력집중부가 많이 존재한다. 또한 용접부에서는 용접결함이 발생할 가능성이 많다. 반복적인 피로하중이 응력집중부에 작용하면 응력집중부에서 피로균열이 발생하고, 발생된 균열의 전파에 의해 피로파괴사고를 일으킨다. 따라서 피로파괴사고를 미연에 방지하기 위하여 균열발생수명과 균열전파수명과 같은 피로수명의 파악이 필요하다. 본 연구에서는 피로균열전파특성 연구에 사용되는 컴플라이언스를 도출하였다. 이 컴플라이언스는 피로균열의 자동화 측정에 활용할 수 있다. 본 연구에서는 CT시험편에 대하여 in-house FEM program을 사용하여 컴플라이언스를 계산하였다. 이 계산결과는 저자의 앞선 연구에서 본 프로그램을 사용하여 계산한 J integral의 계산결과와 대비하여 a/W와의 관계를 제시하였다. 그리고 또한 CT시험편 Back Face의 중앙부로부터 위아래 방향의 스트레인 분포에 계산을 실시하였다. 이 분포에서는 중심으로부터 위아래로 갈수록 스트레인이 감소하는 경향을 나타내었다. 이상의 계산과정으로부터 균열진전시험의 자동수행을 위한 컴플라이언스를 얻을 수 있었다. 이것으로부터 CT 시험편의 피로균열진전시험의 자동화에 활용이 가능하게 되었다.