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Abstract
A number of numerical methods like Compultational Fluid Dynamics(CFD) have been de-
veloped w predict the flow fields of a vessel but the present study is developed io infer the
wake fields on propeller plane by Statistical Fluid Dynamics(SFD) approach which is emerg-
ing as a new lechnique over a wide range of industrial fields nowadays. Neural network is
well known as one prospective representative of the SFD tool and is widely applied even in
the engineering fields. Further o its stable and effective system structure, generalization of
Input training patterns into different classification or categorization in training can offer more
systemalic ireatments of input part and more reliable resuit.
Because neural network has an ability to learn the knowledge through the external informa-
tion, it is not necessary (o use logical programming and it can flexibly handle the incomplete
information which is not easy to make a definition clear. Three dimensional stern hull forms
and nominal wake values from a model test are structured as processing elements of input
and oulpul layer respeclively and a neural network is trained by the back-propagation method.
The inferred results show similar figures to the experimental wake distribution.
Keywords: ship wake, statistical fluid dynamics, neural network, back-
propagation method

1 Introduction

Alterbody shape of a merchant vessel has a big influence on the Alow fields on the propeller plane
and consequently on the self propulsion factors such as wake factor, thrust deduction factor. rel-
ative rotative efficiency as well as resistance charactleristics. And this flow field on the propeller
plane is directly comnected with propeller design and governs its cavitation behavior and propul-
sive efficiency. So high wake peak or inhomogeneous wake patierns should be avoided by a good
qualifted hull form design. Every hutl form designer iry to image or infer flow patterns of his
designing hull forms in the course of all design procedure because they want 1o keep a certain
limitation of homogeneity ol the How fields within the given restriction.

CED tool is one of the good candidates to carry out this kind of estimation or simulation, which
adopts numerical approach to solve physical problem with some simplification and assumption,
but the results ol the CFD show a little bil of skeptical aspect yet even though it requires a very
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high performance computing machine and also a long computing time as well as a tedious grid
generation procedure.

Another emerging approach to predict the flow fields or hydrodynamic behavior is based on
the previous experimenial experience and systematically accumulated dala. Newral nctworks are
today expanding its application ranges and capabilities by adopting new technologies such as (uzzy
theory. genetic algorithm and back propagation in comparison with a previous rigid regression
method. Even in ship design fields, Neural Network is already being introduced, butit is just in the
limited ranges so far. It normally employs artificially formulated parameters (such as I/ B ratio,
B/d ratio, etc) as input variables and simply draw outputs for the estimation and oplimization.

However, we carried out a study 10 use ollset data themselves as inpul variables which are
similar to the input hull form data of CFD computation to predict the wake fields on the propeller
plane as outpul results, The offset datum simuply converted 1o the angle value al a certain point is
focused 10 a certain point 10 have same height value on the vertical line of the propeller plane, This
simple treatment is evalualed that all desired outpul points on the propeller plane and input offsel
points over hull surface are well connected Lo have physical meaning and it is one of the imporiant
factors to gel betler results.

Input and desired outpul data are constructed from 57 vessels built actually in HHI and mea-
sured wake data in Hyundai Maritime Research Institute including the various kinds and ranges
{from very large [ull VLCC 1o high speed slender contlainer carrier.

2 Neural network

2.1 Basic description ol nenral network

The neural network lechnique is structured 1o altempt ariificial modeling of the human brain’s
problem solving capabilities such as calculation, recognition and training. The physical network-
ing transfers a proper signal or stimulus by interaction between biological neurons, which will be
referred as a processing element in the artificial system. The processing element(PE) has many
input paths and combines, usuaily by a simple summation. The combined input is then modified
by a transfer (unction. This transfer function can consist of special kinds of mathematical [unc-
tions like sigmoid, hyperbolic tangent or sine, When inpul values are connccted to each other,
the proper weights which correspond to the synaplic strength of neural connection is multiplied
and added to reach the desired output processing elements. The outpul value manipulated by the
transfer function is generally passed to the output layer, butl some hidden layers can be added be-
tween the input and output layer for the improvement of the network accuracy in a certain complex
case. The weights are modified continuously through a number of iteration (o have appropriate
correlation between inpul and output processing elements.

2.2 Back propagation technigue

Back propagation network, which is also sometimes referced to as a multi-layer perceptron, is
currently used as a common newral network paradigm. Back-propagation network achieves its
generality by the gradient-descent technique (hat is analogous to an error-minimization process.
Error minimization is an atlempt to fit a closed-form solution 1o a set of empirical data points.
The BPN (back propagalion network) learns (0 generate a mapping [rom the input pattern
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Figure 1: Typical back-propagation processing elenient

space to the oulpul pattern space by minimizing the error between the actual oulput producel
by network and the desired output. Each unit modifics its input connection weighis slightly in a
direction that reduces its error signal, and the process is repeated for the next pattern. A back-
propagation element transfer its inputs as follows:

2

= f (Z( el ”)) = 7 (1)

m_g_s] Current output state of 5% neuron in layer s
wﬁ} Weight on connection joining i neuron in layer {5 — 1) to ¥ neuron in layer s

Il Weighted summation of inputs (o 5% neuron in layer s
where f is traditionally, the sigmoid function but can be any differentiable function. The sigmoid
function is defined as

) = {L0+e)™ 2)

If some global error [unction E associaled with il which is a differential function of all the
comnection weights in Lthe network, the critical parameter that is passed back through the layer s is
defined by

el = —arjar (3)

Using the chain rule twice in succession gives a relationship between the local error at a particular
processing element at level s and

e‘g\ﬁ‘ I[b] Z $+1 [-’J+l]) (4)

I

I f is the sigmoid function as defined in (2), then its derivative can be cxpressed as a simple
[umetion of itsell as follows:
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Figure 2: Typical back-propagation processing element

"(2) = flz} - (1O~ f(2)) (5)

Therefore, from (1), equation (4) can be rewriticn as

J['e,] . 3; [.s ) Z(e [s4+1] [s+l]) 6

Provided the transfer function is a sigmoid. The sunmimation term in (6) which is used o back-
propagaie errors is analogous to the summation term in (1) which is used to farward propagate the
input through the network. Thus the main mechanism in a back-propagation network is (o forward
propagate the input to the output layer, determine the error at the output layer, and then propagate
the error to the input layer using (6) or more generally (4). The mulliplication of the error by the
derivative of the transfer funciion scales the error. The aim of the learning process is to minimize
the global etror E of the sysiem by modifying the weights. Given the current set of weights ijJ
increment or decrement of them is determined to decrease the global error. This can be done using
a gradient descent rule as follows:

Akl = — Cloaes - (080l 7)

where Clearn 15 8 learning coefficient. In other words, it changes each weight according to the
size and direction of negative gradient on the error surface. The partial derivatives in {7) can be
calewlated directly from the local errar values discussed in the above, because, by the chain rule
and (1)

E[uwl] = (901} - (B foul)) =~ oL T ®
Combining (7) and (8) together gives
ij[fé] = —Cleam - €l - ﬁgs'{] (9)
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In the above the existence ol a global error function has been assumed without actually spec-
ifying it. This function is needed lo define the local errors at the output layer so ihat they can be
propagated back through the network. Let o denote the actual output produced by the network
with ils current set of weights. If a veclor i is presented at the input edge layer of the network and
the desired ouiput 4 is specified by a teacher, then the global error in achieving from the desired
oulpul is given by

E=05- ((dy—op)?) (10)

k

Here, the raw local error is given by di — og. From (3), the scaled “local error™ at each processing
element of the oulpul layer is given by

el — —aB/o1") = —8E[d0, - dop 0T, = (d — o) - F'(Ix) (11

E in (10) defines the global crror of the network for a particular (4. d). An overall global crror
fonction can be defined as the sum of all the paliern of specific error functions., Then each time
a particular (¢, d) is shown, the back-propagation algorithm modifies the weights 10 reduce that
particular component of the overall error function.

3 Hull form description for neural network

In order to embody a real problem well in the network system, it is most important (o represent
the problem as the appropriate input data 1o have physical meaning. Offset data of a hull lorm
themselves have a very native physical meaning because it indicales wideness at a certain position
and this has a very close connection with flow speed on the propeller plane. Raw and simple
representation may simulate the real problem eflectively, Tt's the main reason why the offset data
ol hull form are simply used as input parameters in this neural network system.

Fignre 3: Offset definition by angle value

But there is still one difficulty 10 make the network system recognize effectively the three
dimensional offset data even if they means wideness al a certain point. To overcome this problen,
lengthwise and breadthwise values ol offset data are converted to an angular value converged
horizonially into one vertical line al the propeller plane shown in Figure 3. It gives physical
meaning that two dimensional value is expressed by one implicalive value.
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Furthermere, entire input data arc obtained at the particular x and z position because cach
vessel has different dimensions respectively such as propeller diameter, ship length and breacdth,
When it is considered wake value is defined as the flow velocity induced on propeller plane, i is
a highly meaningful approach (o generale newly non-dimensionalized section and waler line by
propeller diameter size. Six new stations (0.5,1.2,3,4,5 x D2, where D) is the diameter) and twelve
new walerlines ( from 0. 1. level to 1.2.03 level by each 0.1.0) increment) are generated and crossed
to get the input daia values shown in Figure 4, and it 15 esteemed good enough o represeni afier
body of the hull.
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Figure 4: Section and waterline description

According 1o cach angular position and radial direction, measured wake vatues on the propetler
plane are set as a desired output of the system. It can be divided by every 10 degrees over a hall
side of propeller plane and 19 divisions in clockwise direction. In addition, five radial divisions
from r/R = 0.4 10 1.0 by 0.15 steps are added and in consequence (otal 19 x 5 points of wake
values are adopicd as outpul parameters. The wake is of cause non-dimensional value by ship’s
speed. The basic inputl and output data consist of hull forms and measured wake data by model
lesls thatl cover whaole ranges which can be exiended to the merchant vessel, whose (olal number
ol vessels reach 57, The block coefficient of the collected hull forms is widely dispersed [rom
about 0.55 1o more than 0.85 and the ship’s speed in Froude number is from 0.14 (0 0.26. In
general the reliability of the trained neural neiwork system is quite dependent on the number of
data group because the correlation between inpul and output data are more enhanced il more cases
are shown to network, The commercial program “NeuralWorks Professional IIZPLUS” developed
by "NeuralWare, Inc.” is used for prediction ol the wake field on the propeller plane in this paper.

4 Network training for simulation of wake fields

4.1 Input parameters and hidden layer

Simply converted angle values {rom crossed offset data by new 6 stations and 12 waterlines, as
above stated. are utilized as the basic input parameters for the neural network training. To make
a difference between stations, every station is classified and categorized before the training. This
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categarization can effectively upgrade the training.

4.2 Imput data and categorization

The n and m indicate lengthwise and watcrlinewise number, respectively. The input data are
prepared as: (Xp. Yy forn =1t 6. andm =110 12.

(LB(1,2y (1,30 (1,4 (1,5) (1,6) (1,7) (1.8) (1,9 (1,100 (1,1 1) (1,12)
(2.1)(2.2) (2.3) (2.4) (2,5} (2,6) (2,7 (2.8) (2,9} (2,100 (2,11) (2,12} Lengthwise
(3,1)(3,2)(3,3)(3,4)(3,5)(3,6) (3,7} (3,8) (3,9) (3.10) (3,11) (3,12)
(#,1) (4,2) (4,3) (4,4) (4.5) (4,6) (4,7) (4,8) (4,9) (4,10) (4,11) (4,12)
(5,1)(5,2) (5.3) (5.4) (5.5) (5,6) (5.7) (5.8) (5.,9) (5,10) (5,11} (5,12)
(6,13 (6,2) (6,3) (6.4} (6,5) (6,6) (6,7) (6,8) (6,9) (6,10} (6,11) (6.12)

division

waterlinewise division

Figure 5: Input data numberings

4.3 Hidden layer

To select an oplimum number of hidden layer, variation tests are carried out in the course of the
neural network training and | hidden layer with 12 processing elements is finally adopted for the
raining.

4.4 Output parameters

Because the wake dala (or the tested mocdels are not accumulated in a regular position duoe o dil-
ferent model sizes, each measured wake data are {ransferred (o have a regolar position by interpo-
lation procedure. Every 10 degrees in clockwise direction and 3 radial divisions from /R = 0.4
by 0.15 steps are made over a half side of propeller plane for the description ol the wake value as
the outpul parameters. So 19 x 5 points of the wake values are finally utilized for desired ouiput
processing elements in the training, which are produced in orders as: (r/ 2y, 8m). forn=1~5 at
r/R =0.4,0.55, 070, 0.85, L0 and m =1 ~ 19 between D and 180 degrees.

5 Training resnlts of wake simulations

In the Figure 7, the neural network by back propagation results in 80% correlation and 0.074
RMS (Root Mean Square) errors during 100,000 trainings. Every input and output element shows
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(1,1 (2,1) (3, (4,1 (5,1)
(1,2(2,2) (3.2) {(4.2) (5,2)
(1,3)(2,3) (3.3) (4,3) (5,3) Top
(1.4) (2,4) 3,9 44 5.4
(1,5) (2,5} (3,5) (4.5) (5.5)

(1,131 (2,15) (3,15} (4,15) (5,15)
(1,16) (2,16) (3,16) (4,16) (5,16}
(LITY(2,17) (3,17) (4,17) (5,17)
(1,18) (2,18 (3,18) (4,18} (5,18)
(1,19) (2,19) (3,19 (4,19} (5,19)
Bottom

04t/R  —m0— > 1.01/R

Figure 6: Output data numberings

its magnitude of correlation strength by symbols and its colors. It is generally {ound that the
input elements which are close to the propeller plane have a sirong relationship with the wakc
values. Pspecially processing elements in the low walerline level of the hull [orm and Jong distance
position from propeller give less influence.

After the system iraining. the additional 4 new siern hull forms which is not used for learning
with various kind of dimensions arc tested for the confirmation ol the level of network learning.
An axial wake velocity and it’s harmonic wake distribution of a VL.CC are shown as one example
in the Figure 8, the harmonic wake distribution of a Cape size Bulk carrier and a slender high
speed large container carrier are shown in the Figures 9 and 10, respectively. It is estimated thal
the predicted results are so analogous o measured original wake fields, that it is good enough o
be applied in the design stage before the model tests. Moreover, a very precise depiction of local
vorlices on the full afterbody huil forms can be stated very prospective application in the stern
hull form design. Considering that cven a very advanced CED tool is suffering from dilficulty to
simulate the vortex Now correctly on the propeller plane, it can be esteemed that this new approach
by the neural network technique may produces more reliable results.

To make a comparison of the wake predictions between neural network and CHFD methods,
very recent CED results by KRISO(Korea Research Institute of Ships & Ocean Engineering),
which have simulated relatively realistic hook-like vortex shape, is introduced here in Figure 12.
The same computation on the KRISO VLCC is carried out by the neural network in this paper and
its result is shown in Figure 11. It is very difficull io be directly stated better or worse between
two methods. Figures 11 and 12 show that the present statistical approach method by neural
network is unlikely inferior (o the CFD in the simulation of wake fields for siern hull form design
guantitatively as well as qualitatively.
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Figure 7: Trained network simulation
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FLEn ]

Figure 9: Measured(left) and predicted(right) wake fields for
Cape size Bulk carrier
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e

Figure 10: Measured(left) and predicted(right) wake ficlds
[or high speed large container

Figure 11: Measured(felt) and predicted wake fields by neural
network(right)
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Figure 12: Measured(lelt) and calculated wake fields by
CED(right)

6 Conclusion

Simulation of the wake fields by a new statistical approach using neural network is carried out and
prospective resulls, which show that inlerred wake field on the propeller plane is very similar (o
the measured data, are obtained. Former neural network using fuzzy theory and genetic algorithm
have been applied in a very limited ficlds of the ship design, while the flow fields prediction by
back-propagation method of neural network in this paper may be a novel method (o evaluate and
optimize the stern hull form by prediction of a ship’s wake distribution,

Although the offsel data are used as input parameters like CFD computation, but it is not
needed to take a lot of ime-consuming processing for obtaining target values, and once the leam-
ing of system is finished, additional time consumption is not necessary for the wake field pre-
dictions of another new vessels. Furthermore, if the learning data are conglomerated more, the
rcliability of the system will be upgraded.

Even though the training and basic theory of the system itself have no physical sense of the
flow pattem but the simulation results after the training indicates that flow paltern is physically
commected with the stern hull form as good as imagination, of which results also hint the reliability
of the method.

In this paper, training is made up to 100,000 times ileralions and achieved 80% correlation
results between input data and output data, and according to these it is expected to have obtained
considerably similar results compared to measured data, but if further additional reinforcement,
for instance by increasing the number of case of input, outpul dala or further precise adjustment
of hidden layer and processing elemen(s can be done, the neural network may produce (he much
enhanced results with a more accurate correlation.,

This method can be extended to predict and simulate all kinds of hydrodynamic matters. The
lorm facior, wave resisiance and all self-propulsion Ffactors can be predicted through the neural
network system with basic input parameters of offset data. It is regarded this system will be further
developed (o the entire optimization routine [or the hull [orm design. which will be approached
easily by anyone who wants (0 find something optimized.
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