• 제목/요약/키워드: axial bearing capacity

검색결과 227건 처리시간 0.02초

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

적층고무베어링과 납-고무베어링의 내진 성능에 관한 실험적 평가 (Experimental Evaluation of Seismic Performance of Laminated Elastomeric Bearing and Lead-Rubber Bearing)

  • 김대곤;이상훈;김대영;박칠림
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.53-62
    • /
    • 1998
  • 구조물의 내진 성능 향상을 위해 현재 종종 사용되어지고 있는 기초분리장치인 적층고베어링과 납-고무 베어링의 내진성능을 실험적으로 파악하였다 베어링의 전단 변형률 또는 가해진 수직 하중이 클수록 베어링의 전단 강성은 감소하며 가력 속도에 대한 영향을 무시할 만하다. 베어링은 순수압축력에는 강하며 인장력에는 그 반대이다.

  • PDF

양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정 (Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests)

  • 정경자;조종석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF

Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pole

  • Chen, Li;Zhao, Qilin;Jiang, Kebin
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.215-231
    • /
    • 2011
  • The axial compressive strength of unidirectional FRP is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. In order to restrain the lateral expansion and splitting of GFRP, and accordingly heighten its axial compressive bearing capacity, a project that to confine GFRP pole with surrounding CFRP sheet is suggested in the present study. The Experiment on the CFRP sheet confined GFRP poles showed that a combined structure of high bearing capacity was attained. Basing on the experiment research a theoretical iterative calculation approach is suggested to predict the ultimate axial compressive stress of the combined structure, and the predicted results agree well with the experimental results. Then the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure are also analyzed basing on this approach.

Studies on T-Shaped composite columns consist of multi separate concrete-filled square tubular steel sections under eccentric axial load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Feng, Changxi;Liu, Rui
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.217-234
    • /
    • 2016
  • In order to investigate mechanical properties and load-bearing capacity of T-shaped Concrete-Filled Square Steel Tubular (TCFST) composite columns under eccentric axial load, three T-shaped composite columns were tested under eccentric compression. Experimental results show that failure mode of the columns under eccentric compression was bending buckling of the whole specimen, and mono column performs flexural buckling. Specimens behaved good ductility and load-bearing capacity. Nonlinear finite element analysis was also employed in this investigation. The failure mode, the load-displacement curve and the ultimate bearing capacity of the finite element analysis are in good agreement with the experimental ones. Based on eccentric compression test and parametric finite element analysis, the calculation formula for the equivalent slenderness ratio was proposed and the bearing capacity of TCFST composite columns under eccentric compression was calculated. Results of theoretical calculation, parametric finite element analysis and eccentric compression experiment accord well with each other, which indicates that the theoretical calculation method of the bearing capacity is advisable.

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia;Guangyin Du;Jun Cai;Changshen Sun
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.79-91
    • /
    • 2024
  • The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법 (Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method)

  • 한중근;이재호
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.