• Title/Summary/Keyword: autumn chinese cabbage

Search Result 35, Processing Time 0.023 seconds

Growth Response and $CO_2$ Biomass of Chinese Cabbage and Radish under High Temperature and $CO_2$ Concentration (고온과 고농도 $CO_2$ 조건에서 배추와 무의 생육 반응 및 탄소 고정량)

  • Lee, Ji-Weon;Kim, Seung-Yu;Jang, Yoon-Ah;Moon, Ji-Hye;Lee, Woo-Moon
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.364-368
    • /
    • 2006
  • This experiment was carried out to figure out the $CO_2$ biomass and the growth response of Chinese cabbage and radish grown under the condition of high temperature and high $CO_2$ concentration to provide the information for the coming climatic change. Chinese cabbage and radish were cultivated in spring and autumn seasons under 4 treatments, 'ambient temp.+ambient $CO_2$ conc.', 'ambient temp.+elevated $CO_2$ conc.', 'elevated temp.+ ambient $CO_2$ conc.', and 'elevated temp. +elevated $CO_2$ conc.'. The 'elevated temp,' plot was maintained at 5 higher than 'ambient temp. (outside temperature)'and the 'elevated $CO_2$ cone.' plot was done in 650 ppm $CO_2$. The growth of spring-sown Chinese cabbage was worse than autumn-sown one, and was affected more by high temperature than high $CO_2$. concentration. The $CO_2$ biomass of Chinese cabbage was lower as 25.1-39.1 g/plant in spring-sown one than 54.8-63.4 g/plant of autumn-sown one. Daily $CO_2$2 fixation ability was not significantly different between spring- and autumn-sown Chinese cabbage as 1.9-2.9, 2.7-3.1 kg/10a/day, respectively. The $CO_2$ biomass of radish were 87.4-104.6 /plant in spring-sown one and 51.3$\sim$76.4 g/plant in autumn-sown one. Daily $CO_2$ fixation ability of radish were 6.2-10.1 kg/10a/day in spring-sown one and 4.6-6.9 kg/10a/day in autumn-sown one.

Development of Yield Forecast Models for Autumn Chinese Cabbage and Radish Using Crop Growth and Development Information (생육정보를 이용한 가을배추와 가을무 단수 예측 모형 개발)

  • Lee, Choon-Soo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.279-293
    • /
    • 2017
  • This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.

Effect of Packaging and Loading Conditions on the Quality of Late Autumn Chinese Cabbage during Cold Storage (포장 및 적입 방법이 늦가을배추의 저온저장 중 품질에 미치는 영향)

  • 김병삼;남궁배;김민정
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • To extend the freshness of late autumn Chinese cabbage, the packaging and loading effects on the quality were investigated during cold storage. Judging from overall quality during storage period, late autumn Chinese cabbage could be stored by 3 months at 0$\^{C}$ cold storage. However, late autumn Chinese cabbage was not acceptable for long-term storage because of its marketability and the storage cost. Among 3 packaging methods(PP-net, carton and plastic container) for stored Chinese cabbage, plastic container and carton were more effective than PP-net packaging for the freshness prolongation. Gas composition in the plastic bags during storage was not significantly different among packaging conditions and O$_2$ and CO$_2$ concentrations were 13∼18% and 0.75∼7.48%, respectively, MAP with plastic film was effective for the quality retention because of low oxygen composition and high humidity condition in the bags.

  • PDF

Classification of Radish and Chinese Cabbage in Autumn Using Hyperspectral Image (하이퍼스펙트럼 영상을 이용한 가을무와 배추의 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.91-97
    • /
    • 2016
  • The objective of this study was to classify between radish and Chinese cabbage in autumn using hyperspectral images. The hyperspectral images were acquired by Compact Airborne Spectrographic Imager (CASI) with 1m spatial resolution and 48 bands covering the visible and near infrared portions of the solar spectrum from 370 to 1044 nm with a bandwidth of 14 nm. An object-based technique is used for classification of radish and Chinese cabbage. It was found that the optimum parameter values for image segmentation were scale 400, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5. As a result, the overall accuracy of classification was 90.7 % and the kappa coefficient was 0.71. The hyperspectral images can be used to classify other crops with higher accuracy than radish and Chines cabbage because of their similar characteristic and growth time.

Changes in Free Amino Acid, Carotenoid, and Proline Content in Chinese Cabbage (Brassica rapa subsp. Pekinensis) in Response to Drought Stress

  • Shawon, Rayhan Ahmed;Kang, Baek Song;Kim, Ho Cheol;Lee, Sang Gyu;Kim, Sung Kyeom;Lee, Hee Ju;Bae, Jong Hyang;Ku, Yang Gyu
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.622-633
    • /
    • 2018
  • Chinese cabbage grown during autumn season is confronted with drought conditions for a certain period, especially during the early growth stage. In this study, we investigated the effects of drought stress on plant growth characteristics, as well as free amino acid, carotenoid, and proline in Chinese cabbage. Chinese cabbage seeds (Bulam Plus) were germinated, and all the seedlings were transplanted into plastic containers (28 cm diameter ${\times}$ 22 cm high) containing a commercial growth medium. The soil water content was measured and maintained at 10% for the drought-stressed plants and at 30% for the control plants, for three weeks. The results revealed that plant growth parameters were lower in the drought-stressed plants than in the control plants. The total free amino acid content tended to decrease in both drought-stressed and control plants with time. The total free amino acid content was found to be lower in the drought-stressed plants than in the control plants and the proline content was unaffected. Moreover, at three weeks after treatment, carotenoid content in drought stressed plants was significantly higher than that in the untreated plants. We believe that our study makes a significant contribution to the literature because the effects of drought stress on plant growth parameters, free amino acid, carotenoids, and proline accumulation in autumn growing cultivar of Chinese cabbage have not been widely studied in Korea, and our study provides valuable information in this regard, as Chinese cabbage is consumed throughout the year in Korea.

An Analysis of the Effects of Turbo-tape Drip Irrigation System on Chinese Cabbage (Turbo-tape을 이용한 배추의 점적관개 효과분석)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.31-38
    • /
    • 1993
  • For efficient irrigation of structured horiculture and upland crops, a new technique of drip irrigation using the turbo-tape for Autumn Chinese cabbage was developed. The turbo-tape worked well, and based on this study The following results were obtained ; 1. The emission uniformity of the turbo-tape was very good with a uniformity coefficient of 92.5%. 2. Starting point of irrigation at 80% of the wilting point was better than at the wilting point itself. 3. The irrigation amounts for the Autumn Chinese cabbage cultured ranged 315 to 470mm depending upon the irrigation methods, turbo-tape irrigation method could conserve irrigation water about 37% compared to the furrow irrigation method. 4. Average yields were 2, 430g when the starting point of irrigation was at the wilting point, while 2, 680g when it was at 80% of the wilting point.

  • PDF

Reappraisal of Stimulatory Effect of Garlic on Kimchi Fermentation (마늘의 김치발효 촉진작용에 관한 연구)

  • Lee, Joo-Young;Choi, Mi-Kyung;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.479-484
    • /
    • 2008
  • There have been contradictory reports concerning the role of garlic on kimchi fermentation; therefore, in this study, the stimulatory effect of garlic on the fermentation of kimchi was reappraised. In this study, fermentation of kimchi prepared using spring Chinese cabbage was stimulated by the addition of garlic, but kimchi prepared using autumn Chinese cabbage was not. In addition, the results of this study revealed that the fermentation of kimchi prepared using spring Chinese cabbage was found to be stimulated by glucose, yeast extract, peptone, and secondary ingredients of kimchi, but the fermentation of kimchi prepared using autumn Chinese cabbage was not stimulated by these ingredients. Taken together, these results indicate that general nutrients in garlic stimulate the fermentation of kimchi by compensating for nutrients that are not found in spring Chinese cabbages. However, these findings do not indicate that certain specific substance(s) in garlic stimulate kimchi fermentation.

Assessment of N2O Emission Factor of Autumn Chinese Cabbage Fields at Three Different Geographical Location in South Korea

  • Kim, Gun-Yeob;Park, Woo-Kyun;Jeong, Hyun-Cheol;Lee, Sun-il;Kim, Pil-Joo;Seo, Young-Ho;Na, Un-sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.163-169
    • /
    • 2015
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic sources, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission in the agricultural field is essential to develop national inventories of greenhouse gases (GHGs) emission. The objective of this study was to develop an emission factor to estimate the direct $N_2O$ emission from an agricultural field cultivated with the Chinese cabbage during autumn season in 2010-2012. Emission factor of $N_2O$ calculated over three years experiment using accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0058{\pm}0.00254kg\;N_2O-N\;kg^{-1}\;N$. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices as well as crop species.

Study on The Water Requirements of Chinese Cabbage. (배추 용수량에 관한 연구)

  • 김현철;정두호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3430-3437
    • /
    • 1974
  • .It is very importaut to know the water consumption of crops in planning irrigation works and practicing suitable soil moisture management. For the purpose of making it clear that how much water be consumed to cultivate the Chinese cabbage, Chamber method has been applied. Main equipments in the transpiration chamber are flowers, manometer and electric thermograph. The chamber made of vynyl plate has a small entrance at the base and an exit at the top, and the ventilation in the chamber was carried out by a flower through the entrance and exit. Air-flow adjusted by an orifice manometer enters the chamber from the outside over the crop canopy through the pipe like a chimney and finally goes out to the outside. Two sets which consist of a pair of dry and wet bulb made by thermistor are installed in the entrance and exit tube, and record air temperature automatically. Evapotranspiration amount is computed from the air-flow quantity and difference in absolute humidity between at the entrance and exit of the chamber by the following equation: ET=(X2-X1)${\times}$Q where ET=evapotranspiration amount X1=absolute humidity at the entrance(g/㎥) X2=absolute humidity at the exit(g/㎥) Q=air-flow quantity(㎥) This study was carried out at the upland farm of the Institute of Agriculture Engimeering and Utilization, Suwon, Korea. from 1971 to 1973. The results obtained in this experiment are as follows: 1. The total amount of evapotranspiration of Chinese Cabbage that is cultivated in autumn is 408.1mm during growth period. 2. Chinese cabbage rapidly grows up in the second ten days of September, 40th to 50th days after seeding. At the same time, the maximum amount of evaportranspiration of Chinese cabbage is 61.6mm/10 days 3. The correlation between Pan-evaporation and evapotranspiration is high, coefficient of correlation r=0.88**, and can be shown as The following regression equation: ET=0.913E+20.273 4. Evapotranspiration is closely related with meteorological factors: r=0.85**, for insolation, r=0.76** for air temperature, respectively. 5. The percentage of evapotranspiration amount, at the beginning of growth stage, gradually increases in proportion as the Chinese Cabbage grows but is largely affected by meteorological factors after the green cover formation. 6. By Blaney and Griddle formula, evaportranspiration coefficient "K" are within from 0,85 to 1.27.

  • PDF

The Expression of a Cytosolic Fructose-1,6-Bisphosphatase, a Key Enzyme in Sucrose Biosynthesis, Gene was Diurnally Fluctuated and Increased in Cold Acclimated Leaves of Chinese Cabbage

  • Leen, Jeong-Yeo;Song, Ha-Young;Lim, Yong-Pyo;Hur, Yoon-Kang
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2006
  • Chinese cabbage (Brassica rapa ssp. pekinesis) is one of the most important vegetable crops in korea and other East Asian countries. Cytosolic fructose-1,6-bisphospha-tase (cytFBPase) is a key enzyme in sucrose biosyn-thesis, which controls the sucrose levels as well as the productivity at plants. The Chinese cabbage cytFBPase gene, BrFBPase, encodes the 340 amino acid polypep-tide, giving a theoretical molecular weight of 37.2 kD and a isolectric point of 5.4. BrFBPase showed high sequence identity with Brassica homologs and its functional domains, such as 12,6P$_2$ binding site or active site and F6P binding site, were highly conserved in diverse sources of organisms. Although the genome of Chinese cabbage seemed to be triplicated, BrFBPase appears to be a single copy gene. The expression of BrFBPase was examined at transcript and protein levels under various conditions. BrFBPase expression was observed only in photosynthetic source tissue, not in sink tissue. The expression was slightly higher during the day than at night, and it showed a diurnal cycle with circadian rhythmicity. Short-term exposure to low temperature inhibited the expression of the BrFBPase, while long-term exposure increased the expression, supporting that sugar levels are high in late autumn when temperature are low.